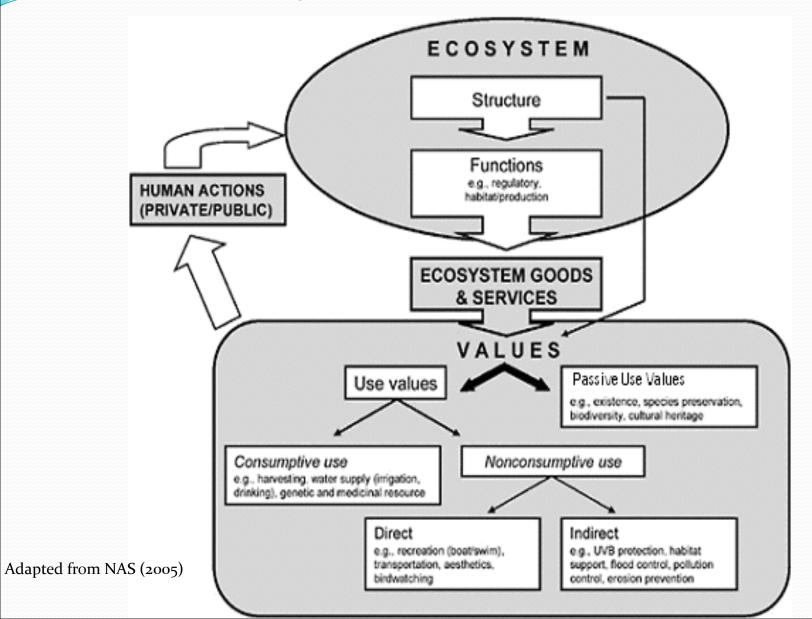
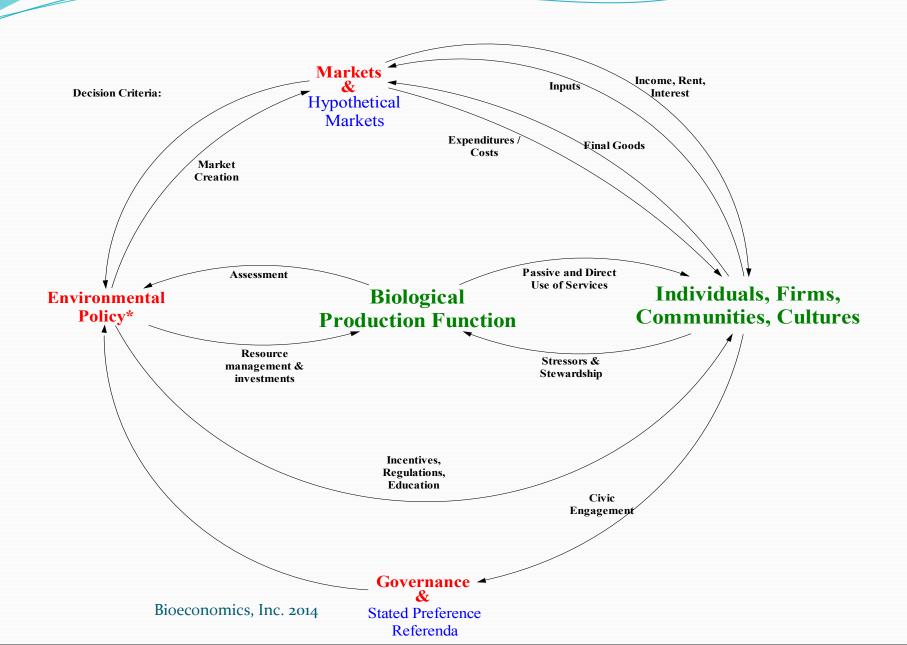
Economic Studies of the Value of Fishery Restoration: Benefits of Passage and Reintroduction

Dr. John Duffield University of Montana & Bioeconomics, Inc.

Future of Our Salmon Technical Workshop: Restoring Historical Fish Passage Spokane, WA March 19, 2014


Outline

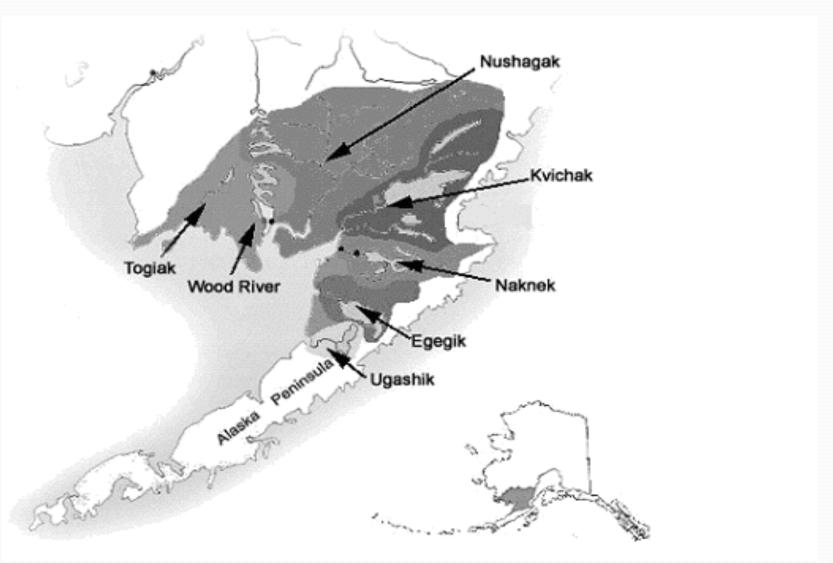
- Salmon economics ca. 1950 Celilo Falls, Kettle Falls
- Current Methods for Valuing Fishery Restoration
- Contemporary cases:
- 1) Bristol Bay Wild Salmon Ecosystem (2014)
- 2) Elwha Dam Removal (1996 study)
- 3) Dam Removal on the Klamath River (2012)
- 4) Grand Canyon/ Glen Canyon Dam (1994, 2014)
- Conclusions


Salmon economics ca. 1950s & 1970s focus on Kettle Falls/Colville

- Indian Claims Commission outcome in 1955 and 1978 for Celilo Falls and Kettle Falls (Colville - Grand Coulee)
- Replace cost of wholesale canned salmon, 1 lb/person-day use, Colville population of 2,677, 6% discount rate.
- Loss computed in 1939 prices of \$0.20/lb. Total loss \$3,257,083 paid in 1978 or \$1,217 per capita for loss in perpetuity
- Correcting for price inflation (paid in dollars worth about \$0.14 cents compared to 1939) and using 3% and correcting for lost use of money (interest) to 1978 value should have been at least \$140.3 million or \$52,409 per capita.
- Takeaway method understates + big errors in application.

Connections between ecosystem structure and function, services, policies and values (source, NAS 2005)

COSERA General Implementation Model: Environmental Economics Layer


U.S. Regulatory Guidance on Types of Approved Methods

- Approved methods based on 43 CFR part 11 include:
- Revealed preference methods: market, appraisal, factor income, travel cost, hedonic price, random utility model
- <u>Stated preference methods</u>: contingent valuation, conjoint analysis, random utility model
- Benefit transfer: unit day value method
- <u>Equivalency Methods</u>: HEA, REA, conjoint analysis
- "Other valuation methodologies that measure compensable value in accordance with the public's willingness to pay, in a cost-effective manner, are acceptable methodologies to determine compensable values .." (43 CFR 11.83 (e)(3))

Application 1: Valuation of Bristol Bay Wild Salmon Ecosystem – direct use

Bristol Bay Study Area

Bristol Bay

- EPA's Watershed Assessment (2014)
- EPA initiates 404c action under Clean Water Act, potentially preclude mining development
- Population is 70% Alaska Native, about 25 villages
- World's largest sockeye salmon fishery sustainable

Source: Duffield et al. 2014. "Bristol Bay Wild Salmon Ecosystem: Baseline Levels of Economic Activity and Values U.S." Appendix J in, EPA. An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska. U.S. Environmental Protection Agency, Washington, DC.

Ecosystem services included

- Commercial salmon fishing and processing
- Recreational (sport) fishing
- Subsistence harvest
- Sport hunting
- Wildlife viewing (non-consumptive use)

Bristol Bay Estimated Direct Use Net Economic Values

Ecosystem Service	Low estimate	High estimate
Commercial salmon fishery		
Fishing Fleet	\$30.4	\$55.9
Fish Processing	\$30.4	\$55.9
Sport fishing	\$12.2	\$12.2
Sport hunting	\$1.4	\$1.4
Wildlife viewing / tourism	\$8.1	\$8.1
Subsistence harvest and activity	\$154.4	\$220.6
Total Direct Use Value	\$236.90	\$354.10

Net Present Value of Bristol Bay Direct Use Net Economic Values

Hetimate	Annua	Net Present Value (million 2009 \$)			
	l Value	7% Discou nt	3% Discoun t	1.75% Discount	1% Discount
Low Estimate	\$236.9	\$3,384	\$7,897	\$13,537	\$23,690
High Estimate	\$354.1	\$5,059	\$11,803	\$20,234	\$35,410

Bristol Bay: Take-away points

- Multiple services have quantifiable economic values.
 - Not just from commercial fishing
 - Subsistence values relatively significant
- Nonmarket values are significant relative to market values.
- Policy and decisions based on just market values lead to allocation error.
- Ecosystem services values can make a difference as they increasingly have traction with policy decision makers.

Application 2: Elwha Dam Removal – passive use values

Elwha River

Elwha River Issues

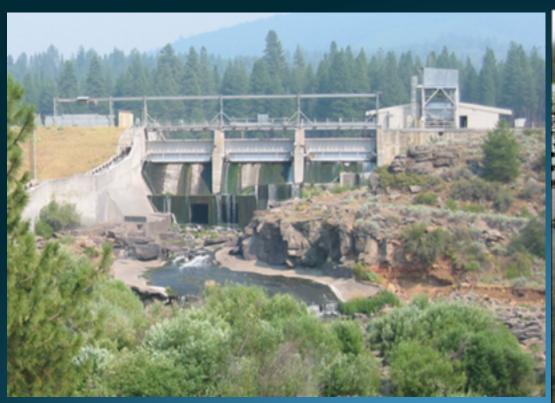
- System has/had two outdated hydroelectric dams which blocked anadromous species migration within the system.
- Elwha is located in a relatively pristine riparian corridor; Olympic NP is the headwaters.
- Historically important for Lower Elwha Klallam Tribe
- Restoration will benefit Tribe, sportsfishery, and commercial fishery.

Elwha River Passive Use Study

- Study undertaken to measure values to nonusers who may care about and value fishery restoration.
- Total of 2,500 surveys to county, state, national strata
- Response rate 55% (national) to 77% (county)
- Annual payment for 10 years yes/no format
- Source: John Loomis. 1996. "Measuring the economic benefits of removing dams and restoring the Elwha River: Results of a contingent valuation survey>
- Water Resources Research, 1996

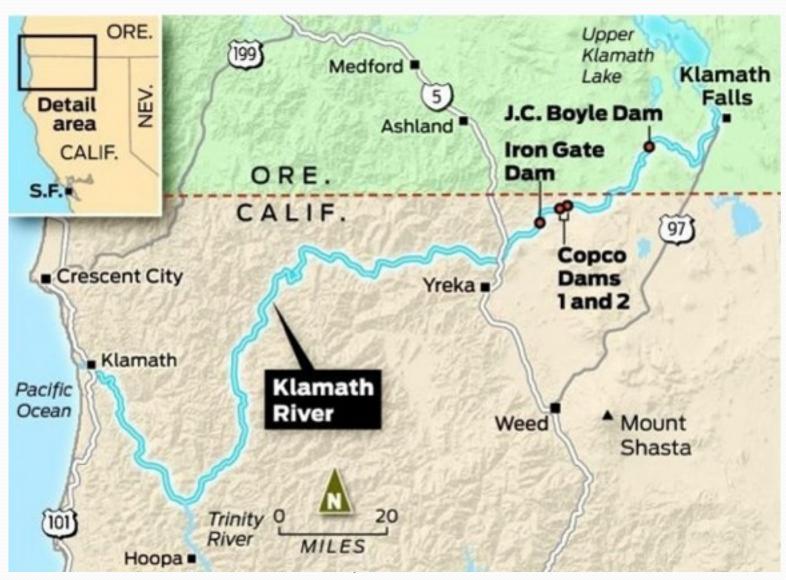
Elwha Passive Use Study Results

Mean annual value per household for dam removal	Aggregate 10-year benefits	Survey population
\$59 (90% confidence		Clallam County
\$73 (90% confidence	\$138 million	Rest of Washington state
\$68 (90% confidence	\$3 to \$6 billion	Rest of United States


Current status of Elwha River Restoration

- Started September 2011
- Elwha Dam completely removed, Lake Aldwell reservoir drained, restoration underway
- Glines Canyon Dam 50% removed, Lake Mills reservoir drained
- Elwha River is free flowing for the first time in 100 years
- Scheduled completion September 2014

Take-away from Elwha


- Passive use values may be very significant, even for a relatively small fishery.
- Underscores that salmon and other unique or endangered native fisheries are nationally significant resources
- Elwah in part a special case because the restored passage is to a pristine ecosystem that is part of Olympic National Park.
- There remain many dams in the NW where services associated with hydroelectric development may outweigh values of a fishery restored through dam removal.

Application 3: Valuing Dam Removal to Protect Native Fish—Klamath River

Klamath River

Klamath River Issues

- Formerly 4th largest producer of western US salmon
- Home to endangered and culturally important sucker and bull trout species
- Has a unique and outstanding recreational whitewater reach
- Agricultural water withdrawals compete with both fish species and recreation
- Dams block free passage of migratory fish species

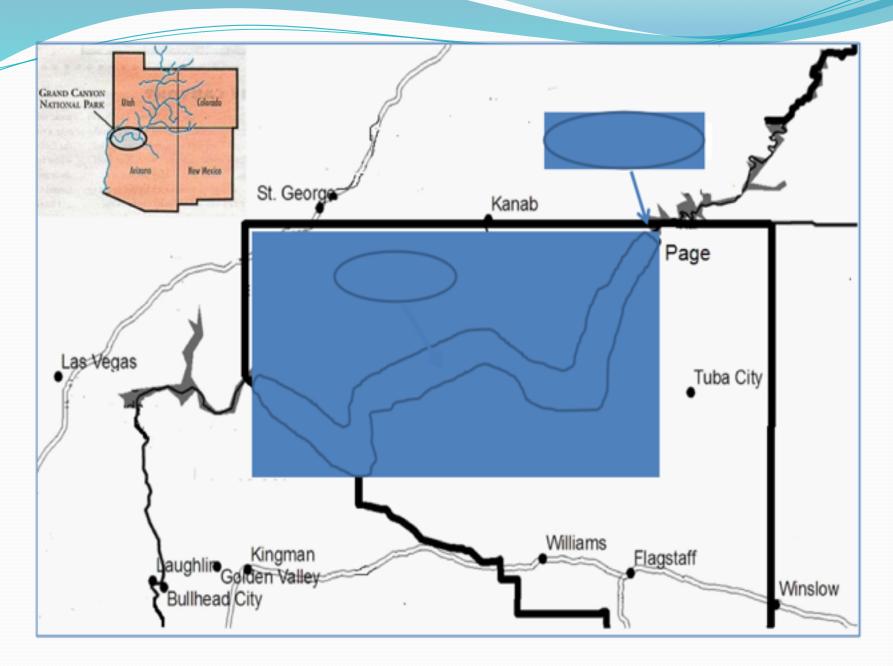
Klamath River Passive Use Study

- Prepared for US Bureau of Reclamation by RTI International in 2012
- Utilized a regional and national household survey to estimate passive use values associated with dam removal, fisheries restoration and a water sharing agreement with agricultural interests.
- Employed a "choice experiment" contingent valuation question design:
 - Attributes included species extinction risk, salmon population levels, and cost.

Klamath Passive Use Study Results

Area	Annualized	Appual WTD for Action
12-county Klamath area	\$68	\$0.217
Rest of Oregon and California	\$118	\$9.07 1
Rest of the United States	\$118	<i>\$74.98</i>
Total		\$84.271

Bioeconomics, Inc. 2014


Current Status of Klamath Restoration

- Ongoing negotiation/litigation
- Any dam removal restoration is likely 20 years out

Application 4: Grand Canyon of the Colorado / Glen Canyon Dam

Bioeconomics, Inc. 2014

Bioeconomics, Inc. 2014

Grand Canyon Ecosystem Economic Studies

- Issue: management of Glen Canyon Dam for peaking operations, studies began in early 1980's
- Economics focus on direct recreation use values as function of flow & ecosystem service values for sediment conservation and endangered species (humpback chub recovery)
- EIS process resulted in a new Record of Decison in 1995 that reduced daily allowable fluctions for peaking power from historical 25,000 plus-minus to 6,000 to 8,000 daily

Key previous studies of Grand Canyon of the Colorado resources

- Direct use values- Bishop et al 1987
- Nonuse values- Welsh et al 1995
- Studies were in context of Glen Canyon Dam operations
- Focus was Grand Canyon river corridor below the dam

Annual Values Associated with Alternative Dam Operations (\$ millions)

Flow Scenario	Power	Recreation	Nonuse Values	
			National	Marketing Area
Moderate Fluctuating Flows	-36.7 to -54.0	+0.4	+2,286.4	+52.2
Low Fluctuating Flows	-15.1 to -44.2	+3.7	+3,375.2	+50.5
Seasonally Adjusted Steady Flow	-88.3 to -123.5	+4.8	+3,442.2	+81.4

Bioeconomics, Inc. 2014

Reliance on Passive Use Values by U.S. Dept. of the Interior 1996 ROD

Although there would be a significant loss of hydropower benefits due to the selection of the preferred alternative (between \$5.1 and \$44.2 million annually) a recently completed non-use value study conducted under the Glen Canyon Environmental Studies indicates that the American people are willing to pay much more than this loss to maintain a healthy ecosystem in the Grand Canyon. "

(Record of Decision, Operation of Glen Canyon Dam Final EIS, October 1996. Bruce Babbitt, Secretary of the Interior

Conclusions:

Conclusions

- Economics depends totally on biology and physical sciences
- 2. It is not just direct use values that matter; passive use, or existence value may be a large component.
- Most approaches to valuing subsistence use understates real values.
- 4. Results are sensitive to how we weigh the future (choice of a discount rate)

Citations

- U.S. Environmental Protection Agency. 2014. "Bristol Bay Wild Salmon Ecosystem: Baseline Levels of Economic Activity and Values U.S." in, EPA. An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska. U.S. Environmental Protection Agency, Washington, DC.
- Duffield J, C Neher, and D Patterson. 2014. "Oil Spill in Northern Waters: Trial Outcomes and the Long-Term in Case of the Exxon Valdez." Arctic Review on Law and Politics vol. 5, 1/2014 pp. 39-75.
- Mansfield, C et al. 2012. "Klamath River Basin Nonuse Value Study." Report for U.S. Bureau of Reclamation, Sacramento, CA.
- Loomis, John B. 1996. "Measuring the economic benefits of removing dams and restoring the Elwha River: Results of a contingent valuation survey" *Water Resources Research*, 32(2): 441-447;
- Duffield, J. 2011. "The Political Economy of Hydropower and Fish in the Western U.S.". Chapter 8, pp 127-171 in Per-Olav Johansson and Bengt Kristrom, eds., *Modern Cost-Benefit Analysis of Hydropower Conflicts*, Cheltonham & Northhampton: Edward Elgar. July 2011.