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Abstract 

Two alternative actions are being evaluated in the Klamath Basin:  1) a No Action Alternative (NAA) and 
2) removal of four mainstem dams (Iron Gate, Copco I, Copco II, and J.C. Boyle) and initiation of habitat 
restoration in the Klamath Basin under a Dam Removal Alternative (DRA).  The decision process 
regarding which action to implement requires annual forecasts of abundance with uncertainty under each 
of the two alternatives from 2012 to 2061.  I forecasted escapement for both alternatives by constructing a 
life-cycle model (Evaluation of Dam Removal and Restoration of Anadromy, EDRRA) composed of: 1) a 
stock recruitment relationship between spawners and age 3 in the ocean, which is when they are 
vulnerable to the fishery, and 2) a fishery model that calculates harvest, maturation, and escapement.  To 
develop stage 1 of the model under NAA, I estimated the historical stock recruitment relationship in the 
Klamath River below Iron Gate Dam in a Bayesian framework.  To develop stage 1 of the model under 
DRA, I used the predictive spawner recruitment relationships in Liermann et al. (2010) to forecast 
recruitment to age 3 from tributaries to Upper Klamath Lake, which is the site of active reintroduction of 
anadromy.  I also modified the spawner recruit relationship under DRA to include additional spawning 
capacity between Iron Gate Dam and Keno Dam.  In order to facilitate the comparison of the two 
alternatives, I used paired Monte Carlo simulations to forecast the levels of escapement and harvest under 
NAA and DRA.  Median escapements and harvest were higher in DRA relative to NAA with a high 
degree of overlap in 95% confidence intervals due to uncertainty in stock-recruitment dynamics.  Still, 
there was a 0.75 probability of higher annual escapement and a 0.7 probability of higher annual harvest 
by performing DRA relative to NAA, despite uncertainty in the abundance forecasts.  The median  
increase in escapement in the absence of fishing was 81.4% (95% symmetric probability interval 
[95%CrI]: -59.9%, 881.4%), the median increase in ocean harvest was 46.5% (95%CrI: -68.7, 1495.2%), 
and the median increase in tribal harvest was 54.8% (95%CrI: -71.0%, 1841.0%) by performing DRA 
relative to NAA (estimates provided for model runs after 2033 when portion of the population in the 
tributaries to UKL are assumed to be established and Iron Gate Hatchery production has ceased). 
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1 Introduction 

Evaluation of alternative actions in light of imperfect information is a dilemma commonly faced by 
decision makers (Berger 2006; Raifa and Sclaifer 2000).  Often, there is a mismatch between the time 
needed to amass information through studies to provide a body of evidence for one action versus another 
(long time frame) and the time over which a decision is needed (short time frame).  Modeling is a critical 
step in the decision making process and is useful for evaluating the outcome of each action, the 
uncertainty in the outcomes, and how those relate to the decision maker’s objectives (Clemen 1996).  
Analyses that can improve the predictive ability of such models, such as statistical analysis, are valuable 
in revealing and quantifying some of the uncertainties in the decision process.  Bayesian statistical 
analyses are particularly well suited to decision analysis given their natural approach to modeling 
uncertainty (Berger 2006).  In the report that follows, I conducted a series of Bayesian statistical analyses 
and performed model forecasts in support of a decision: whether to operate the series of dams on the 
Klamath River consistent with recent history (the No Action Alternative) or whether to remove the four 
mainstem dams, restore anadromous Chinook salmon to the tributaries of Upper Klamath Lake, and 
initiate habitat restoration efforts in the tributaries of the Klamath Basin (the Dam Removal Alternative). 

Chinook salmon (Oncorhynchus tshawytscha) in the Klamath River historically used the full extent of the 
watershed including tributaries to Upper Klamath Lake (Fortune et al. 1966; Lane and Lane Associates 
1981; Moyle 2002; Hamilton et al. 2005; Butler et al. 2010).  There are two distinct populations native to 
the Klamath Basin, namely spring and fall run.  Spring run enter the river between March and July prior 
to maturation and hold in pools for 2 to 4 months prior to spawning, whereas fall run enter as mature 
adults from July through December and move directly to spawning grounds (Andersson 2003).  In the 
tributaries of the Klamath Basin that currently have anadromy, the majority of Chinook runs are fall run 
(Andersson 2003), whereas spring run Chinook populations are found in the Salmon and Trinity rivers.  
With the potential for restoration of Chinook anadromy to the full watershed, there is interest in 
understanding how the levels of Chinook abundance in the Klamath Basin may change relative to the 
current conditions. 

The objective of this effort is to develop a model that is capable of providing annual forecasts of Chinook 
abundance with estimates of uncertainty.  The model must be able to represent the Chinook populations 
of the Klamath Basin using a life-cycle approach that incorporates harvest.  The model must also be 
capable of evaluating two alternative scenarios: 1) a Dams Removal Alternative (DRA) in which the four 
mainstem dams (Iron Gate, Copco I, Copco II, and J.C. Boyle) are assumed to be removed in 2020, flows 
in the Klamath River are managed to attain hydrology as described in the Klamath Basin Restoration 
Agreement (KBRA), habitat improvements of spawning reaches are enacted as described in KBRA, and 
an active reintroduction program is implemented for the tributaries of Upper Klamath Lake (UKL); and 2)  
a No Action Alternative (NAA) in which the four mainstem dams remain in place and the flows in the 
Klamath River are managed to attain hydrology as described in the 2010 NMFS Biological Opinion 
(Hamilton et al. 2010).  The period of record for the forecast is 2012 – 2061; thus modeling of both 
alternatives begins with the dams in place.  The model was named EDRRA (Evaluation of Dam Removal 
and Restoration of Anadromy) to distinguish the work here from other models being developed in the 
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Klamath Basin to understand the effects of dam removal, hydrology modifications, and habitat 
restoration. 

The EDRRA model is composed of a stock production phase in which spawners generate progeny to the 
age 3 ocean stage.  The stock production functions could potentially be derived in several ways: 1) 
statistical analysis of historical data, 2) literature derived values, and 3) professional judgment.  Analysis 
of stock production relationships have been conducted periodically for Chinook of the Klamath Basin 
from spawner to adult recruit (e.g., STT 2005).  These data are useful for estimating a new stock 
production function to age 3.  Further, estimation of the stock production functions in a Bayesian 
framework can be used to quantify the uncertainty in the stock recruitment parameters and provide 
predictive probability distributions for forecasting (e.g., Punt and Hilborn 1997).  Where spawner and 
recruit data are not available, other methods must be used to make predictions of the spawner and 
recruitment relationship.  A meta-analysis of stock-recruitment for Chinook populations throughout the 
western U.S. and Canada by Liermann et al. (2010) provide valuable insight into Chinook population 
dynamics.  In particular, Liermann et al. (2010) provide posterior predictive distributions for calculating 
unfished equilibrium population abundance as a function of watershed size and provide posterior 
predictive distributions of productivity for both stream and ocean type Chinook.  Such predictive 
distributions are valuable for making forecasts regarding the reintroduction of Chinook into tributaries to 
Upper Klamath Lake (UKL), where active reintroduction is planned for the Williamson, Sprague, and 
Wood Rivers (Hooton and Smith 2008). 

To complete the life cycle, the ocean component of the life-history was needed.  An “off the shelf” 
Klamath basin harvest model was made available by the Southwest Fisheries Science Center of NMFS 
(Mohr In prep).  The Klamath Harvest Rate Model (KHRM), a spatially and temporally aggregated 
version of the Klamath Ocean Harvest Model (KOHM), calculates all sources of mortality starting at age 
3.  The KHRM, described in detail by Prager and Mohr (2001) and Mohr (In prep) takes as input the 
abundance of age 3, 4 and 5 Chinook in the ocean on September 1, and projects this population through 
the processes of natural mortality, ocean fishing, maturation, entry to the river, and river fisheries.  
Mature fish that avoid impact by river fisheries escape to spawn.   

Using the EDRRA model, I compared the abundance of Chinook salmon under two alternative actions 
defining the future condition of the Klamath Basin.  I analyzed a time series of spawner and recruitment 
data from 1979 to 2000 in the Lower Klamath Basin (STT 2005) in a Bayesian framework to develop a 
posterior predictive spawner recruitment relationship, which was used for forecasting future productivity 
in the lower basin.  For areas of the Klamath Basin that lacked historical data, I used a spawner 
recruitment model that assumed capacity was related to watershed size and provided predictions of 
recruitment in probabilistic terms (Liermann et al. 2010).  To complete the life cycle and understand the 
effect of the two actions on the fishery, I used the KHRM to calculate harvest and escapement.  To 
facilitate the decision making process, I computed absolute and relative escapement and harvest metrics 
under NAA and DRA. 

2  Methods 

2.1 Retrospective Analysis 

2.1.1 Stock Recruitment Data 
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Data on escapement and stock size were obtained from STT (2005).  The recruitment was defined as the 
abundance of progeny spawned by S in calendar year BY that survive to become ocean age 3 on 
September 1 in calendar year BY+3 (STT 2005) (Table 1).  The values in Table 1 were also used to 
compute a conversion factor (CF) from adult recruits (R) to age 3 ocean N3,Sept1 .  The CF was estimated as 
a N(2.03, 0.009) random variable, where with N(µ, σ2) indicates a Normal (Gaussian) random variable 
with mean µ and variance σ2. 

2.1.2 Statistical Model 

A Ricker stock-recruitment model (Quinn and Deriso 1999) was used to represent the levels of 
recruitment of age 3 adults in the ocean (Rt) as a function of the spawner abundance (St) for brood years t 
= 1979,…,2000. 

�� = ����{−���+ ��}, ��~	(0, 
�   
2 )       (Equation 1) 

where �� is logNormal measurement error.  The model was log transformed to obtain linearity in the 
relationship between log recruitment and spawning abundance given α’ = log(α).  

log(��) = α′ + log(��) – ��� + ��       (Equation 2) 

The model term log(St) was treated as an offset with a known coefficient value of 1 (McCullagh and 
Nelder 1989).  Further additions to the model can be made by adding terms affecting the annual 
variability in the relationship between log recruitment and spawner abundance.  In particular, I modeled 
the effect of annual variability in recruitment due to a common variability index (CVIt) that was based on 
log survival rates of Iron Gate Hatchery (IGH) and Trinity River Hatchery (TRH) fingerling releases.  
Unlike typical covariates in a regression equation that are assumed known without error, the values of 
CVIt were assumed known with error (described below). Note that the values of CVIt were scaled to the 
levels of annual variability in the natural recruitment via the coefficient δ.   

log(��) = α′ + log(��) – ��� + �
��� +  ��      (Equation 3) 

 

2.1.3 Common Variability Index 

The fingerling survival from IGH and TRH in the four months after release (May – Aug) for brood years 
1979 to 2000 were compiled by STT (2005) to created an early-life survival index based on those data 
(Table 2).  Instead of using the early life survival index, I used the log survival rates of fingerling 
Chinook released from IGH and TRH to understand the sources of annual variability in hatchery log 
survival rates hj,t for hatchery j = IGH, TRH, and brood year t = 1979,…, 2000.   

ℎ�,� = �� +  
��� + �� (��) +  ��,�,      (Equation 4) 
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��,�~	(0, 
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where the log hatchery survival rates 
function of a mean level of survival for each hatchery 

source of variability to both hatchery stocks (
river associated with each hatchery
Seiad in the first two weeks of July, 
monthly July flow at Lewiston, US

Coefficients in Equations 4 and 3 were estimated simultaneously in a Bayesian framework.   The directed 
acyclic graph (DAG) for the probability model
the parameters (Figure 1).  The values of
as random effects variable in Equation 4
treated as an error in variables covariate 
recruitment.   

2.1.4 Bayesian Estimation 

The Bayesian paradigm estimates a probability distribution of the model parameters 
data  by using Bayes’ rule:  

 

where  is the posterior probability distribution of the model parameters given the data, 
prior probability distribution of the model parameters, 
model parameter values, and 
probability density,  , may also be viewed as integrating across the entire parameter space of 

.  

Priors for the coefficients in the Bayesian estimation were non
et al. 2004).   Priors for both the mean and the variance of the coefficients were required.  Priors for the 
means were given normal distributions with large variances 
variance terms were given inverse gamma distributions that had approximately uniform probability 
density across the range of likely values (e.g, IG(0.001, 0.001)

The posterior distributions of the mod
conditional distributions of each parameter given values of all other parameters. This was implemented by 
using a Metropolis within Gibbs Markov Chain Monte Carlo (MCMC) approach (Gelman
Gilks et al. 1996).  If the posterior distribution is a standard statistical distribution
mean and the variance are conjugate priors
Markov Chain (Roberts and Polson 
thus the Gibbs sampler was used.  MCMC sampling was
et al. 2003).   

Diagnostics of MCMC chains are required to ensure that the MCMC chain
target distribution.  Multiple chains were run using dispersed
reduction factor (SRF, Gelman et al. 2004), which indicates whether further sampling would improve the 
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and 3 were estimated simultaneously in a Bayesian framework.   The directed 
probability model provides a mapping of the conditional relationships among 

values of CVIt were not known with certainty, but 
m effects variable in Equation 4.  In equation (3), the common hatchery variability 

covariate (e.g., Congdon 2002) in the regression model for natural 

The Bayesian paradigm estimates a probability distribution of the model parameters 

      

is the posterior probability distribution of the model parameters given the data, 
prior probability distribution of the model parameters,  is the likelihood of the dat

 is the marginal probability density of the recapture data.  The marginal 
may also be viewed as integrating across the entire parameter space of 

Bayesian estimation were non-informative (Box and Tiao
.   Priors for both the mean and the variance of the coefficients were required.  Priors for the 

means were given normal distributions with large variances (e.g., N(0,1000)), whereas priors for the 
variance terms were given inverse gamma distributions that had approximately uniform probability 
density across the range of likely values (e.g, IG(0.001, 0.001)) (Table 3).   

The posterior distributions of the model parameters   were estimated by drawing samples from the full 
conditional distributions of each parameter given values of all other parameters. This was implemented by 
using a Metropolis within Gibbs Markov Chain Monte Carlo (MCMC) approach (Gelman

If the posterior distribution is a standard statistical distribution
conjugate priors, the Gibbs sampler may be used to update the samples in

Polson 1994).  The non-informative priors used here were conjugate priors, 
used.  MCMC sampling was implemented in WinBUGS 1.4.3 (Spiegelhalter 

Diagnostics of MCMC chains are required to ensure that the MCMC chain has converged to a stationary 
Multiple chains were run using dispersed initial values for each model, and a

reduction factor (SRF, Gelman et al. 2004), which indicates whether further sampling would improve the 
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effect of summer flow in the 
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not known with certainty, but rather were estimated 
.  In equation (3), the common hatchery variability (CVIt) is thus 

in the regression model for natural 

The Bayesian paradigm estimates a probability distribution of the model parameters  given the observed 

(Equation 5) 
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accuracy of draws from the target distribution, was calculated for each monitored quantity in the model. 
Monitored parameters in all models had SRF values that indicated samples were being drawn from the 
target distribution (i.e. SRF  ) by 50,
the stationary target distribution and were discarded 
produce approximately 1,000 draws from the station
compute the posterior mean and 95% central probability intervals or credible intervals (95% CrI). The 
diagnostics were implemented using the R2WinBUGS package (Sturtz

I compared two models of stock recruitment; the first model was the b
second alternative model with the common variability index (Equation 3).  
Criterion (DIC) to evaluate model predictive ability with a penalty for model complexity (Spiegelhalter et 
al. 2002).  

  

where the deviance   is equal to 2 
deviance is a measure of model fit and decreases with better fitting models. The deviance is calculated at 
each iteration of the MCMC chain, and the first term
mean of the deviance (e.g., 

equation 6 is pD, which is the effective number of parameters. 
number of parameters is typically less than the total number of estimated parameters, because information 
is being shared among random effects. The term 
2002), and   is the deviance evaluated at the posterior mean of the model param

).   

2.1.5 Fisheries Reference Points

Reference points of the Ricker stock recruitment relationship were calculated using the following formula 
(Ricker 1975): 

Smsy is the spawner that provides maximum sustainable yield.  There is no analytical solution to the 
equation (Quinn and Deriso 1999), thus it was solved iteratively by maximizing the yield (
is defined as 

������� !"#$%+&���''''' (–  ���� 

To calculate Smsy, I assumed the random effect of 

Smax is the spawner abundance that provides maximum recruitment:

��)* =
1

!   

Sueq is the spawner abundance at 
adults.  When the recruitment is defined as an earlier life stage, it is still useful as the spawner abundance 
that equals the abundance of the earlier life stage; here it is 
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s from the target distribution, was calculated for each monitored quantity in the model. 
Monitored parameters in all models had SRF values that indicated samples were being drawn from the 

) by 50,000 samples. The initial 30% of the samples were used to reach 
the stationary target distribution and were discarded (“burn in”) with the subsequent samples thi

000 draws from the stationary target distributions. The 1,
posterior mean and 95% central probability intervals or credible intervals (95% CrI). The 

diagnostics were implemented using the R2WinBUGS package (Sturtz et al. 2005) in R (RCDT 2010).

I compared two models of stock recruitment; the first model was the base model (Equation 2) and a 
second alternative model with the common variability index (Equation 3).  I used Deviance Information 
Criterion (DIC) to evaluate model predictive ability with a penalty for model complexity (Spiegelhalter et 
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equation (Quinn and Deriso 1999), thus it was solved iteratively by maximizing the yield (

      

, I assumed the random effect of CVI was at its average value (i.e, 

is the spawner abundance that provides maximum recruitment: 
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(Spiegelhalter et al. 
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Reference points of the Ricker stock recruitment relationship were calculated using the following formula 

is the spawner that provides maximum sustainable yield.  There is no analytical solution to the 
equation (Quinn and Deriso 1999), thus it was solved iteratively by maximizing the yield (R – S), which 

(Equation 7) 

was at its average value (i.e, CVI = 0) 

(Equation 8) 

population size, assuming recruitment is defined as 
adults.  When the recruitment is defined as an earlier life stage, it is still useful as the spawner abundance 

(Equation 9) 
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Estimating the model parameters in a Bayesian framework facilitated the calculation of the fishery 
reference points as probability distributions.  Distributions for fishery reference points were calculated by 
drawing 1000 samples from the posterior distributions of the model parameters, calculating the reference 
point for each of the 1000 draws and forming a probability distribution. 

 

2.1.6 Assumptions for retrospective analysis 

The assumptions in conducting the retrospective analysis using the Ricker stock – recruitment model are 
the same as those enumerated in STT (2005, p. 2).   In addition, I make the following assumptions in the 
retrospective stock recruitment analysis: 

1. The flow metrics (July flow at Seiad on the Klamath River and July flow at Lewiston on the 
Trinity River) were representative of annual variability in flow.  I evaluated multiple flow metrics 
in a correlation analysis to evaluate multiple flow metrics to residuals from the STT (2005) 
analysis (not shown).  In addition, the amount of variability attributable to flow was relatively 
small compared to CVI; therefore, incorporation of alternative flow metrics should have a small 
effect on parameter estimates. 

2. The Bayesian model is drawing samples from the stationary posterior distribution of model 
parameters (i.e., the model has converged).  While there are tests for lack of convergence (i.e., 
SRF values) that were used here, there are no methods to guarantee convergence. 
 

 

2.2 Forecasting Abundance under the NAA and the DRA 

Under both the NAA and the DRA, the life cycle of Chinook was completed in two stages: 1) production 
of natural origin age 3 ocean fish from spawners and hatchery origin age 3 ocean fish from Iron Gate and 
Trinity River hatcheries, and 2) calculation of harvest, maturation rates, natural mortality, and escapement 
by the KHRM (Mohr In prep).  The production of age 3 ocean fish was implemented with Monte Carlo 
simulations to incorporate uncertainty in the abundance forecasts.  I conducted 1000 Monte Carlo 
simulations to characterize the uncertainty in future productivity under each of the two alternatives.  Each 
iteration of the Monte Carlo simulation paired the NAA and DRA forecasts; parameter draws used in the 
production stage under NAA and DRA (e.g., values of CVIt) were the same under NAA and DRA for 
each iteration of the model.  For example, the value of CVI2024 was the same in iteration 724 of NAA as in 
iteration 724 of DRA.  Using the same covariate values in a given iteration allowed paired comparisons of 
model outputs, which were valuable for calculating the relative benefits of the two alternatives in spite of 
uncertainty in the absolute abundances.   

I provide details on the production of age 3 ocean fish under the two alternatives below. The application 
of KHRM was the same between the NAA and DRA evaluations which also facilitated comparison of 
DRA and NAA on relative terms.  In general, the default values of the KHRM were used in EDRRA.  
Values of the biological parameter set that were supplied for each run of KHRM were:  
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1) Na , which was a vector of abundances consisting of:  age 3 hatchery and natural origin in the 
ocean, age 4 hatchery and natural origin in the ocean, and age 5 hatchery and natural origin in the 
ocean 

2) ga, which was a vector of proportions of the natural origin consisting of: age 3 natural 
proportion, age 4 natural proportion, and age 5 natural proportion. 

The KHRM operated as a deterministic harvest model with uncertainty in harvest and escapement arising 
only from the input of the Na , ga, vectors only.  The fishery control rule defined the harvest rates based on 
expected levels of escapement in the absence of harvest (Mohr In prep), and under both the NAA and 
DRA the fishery control rule was an updated version of the amendment 16 fishery control rule (Appendix 
A).  The default management parameters and the fishery parameters in the KHRM were not modified; 
therefore, the management and fishery behavior of the KHRM model was exactly the same under both 
alternatives.   

The role of flow in the Klamath and Trinity Rivers was expected to affect hatchery survival rates, and 
flow was included in the forecasted production functions to age 3.  Flows for the Klamath River at Seiad 
were forecasted for the 50 year period (2012 to 2061) as part of flow studies on the Klamath River in 
support of the Secretarial Determination process (Reclamation 2010).  Two flow series were used as part 
of the hydrological evaluation of future conditions in the Klamath Basin; these were the flows under the 
Biological Opinion (NMFS 2010) and the flows as recommended under KBRA.  In the Ricker stock 
recruitment model presented here, the flow covariate was normalized to have a mean value of 0 and a 
standard deviation of 1.  In order to use the parameter values for flow (γIGH), hydrology data for the 
Klamath River at Seiad was normalized using the same values as the historical data (mean of 1589.0 cfs, 
sd = 944.17).  These normalized flows are presented in Figure 2 to provide a comparison under the two 
alternatives.  In the Trinity River, no such flow forecasts were available; therefore, I constructed a time 
series of flows that were consistent with historical flows.  The constructed flow series for the Trinity was 
used for all iterations of EDRRA under NAA and DRA. 

Monte Carlo simulation was used to integrate across the uncertainty in the model parameters with the 
objective of translating uncertainties in model inputs into uncertainties in model outputs (Manly 1997).  
Monte Carlo simulation is a technique that involves using random numbers sampled from some form of a 
probability distribution as input to a deterministic equation or model to derive an outcome under 
conditions of uncertainty.  As the number of outcomes in the simulations approaches infinity, the statistics 
(mean, standard deviation, etc.) converge to their true value (Givens and Hoeting 2005).   

2.2.1 Production to Age 3 in the Ocean under the No Action Alternative (NAA) 

Forecasted production under the NAA consisted of production of natural origin and hatchery origin age 3 
ocean salmon.  Forecasts of natural production were based on the results of the retrospective Ricker 
stock-production function described previously (Equation 3).  Values of CVIi,t were drawn for each 
iteration i and year t of the model, where t is now the year when the cohort is at age 3 and St-3 is the 
spawner abundance.  The values for CVIi,t were drawn from a N(0,σ2 CVI,i ) and residual error εi,t from N(0, 
σ

2 ε,i).  The values of the parameters of the stock production function (α’, β, δ) were drawn from their 
Bayesian posterior distributions.  In each year the hatchery was operational, the Trinity River Hatchery 
produced 3 million and the Iron Gate Hatchery produced 6 million fingerlings.  Values of log hatchery 
survival were drawn from their posterior distributions (e.g., κj, γj for j = IGH, TRH) and the residual error 
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was drawn from  N(0,σ2 h,i).  To provide age 3 hatchery abundance, hatchery fish were assumed to have 
an age 2 to age 3 survival rate of 0.5 (Hankin and Logan 2010).  For a more detailed description of the 
steps in the NAA simulation, please see Appendix B. 

2.2.2 Forecasting Abundance under the Dam Removal Alternative (DRA) 

There are several substantial changes to the Klamath River system that were incorporated in the model 
under DRA: 1) production in the tributaries of Upper Klamath Lake (Wood, Williamson, and Sprague 
Rivers); 2) reintroduction of Chinook to these tributaries of UKL; 3) production in the mainstem Klamath 
from Iron Gate Dam to Keno Dam and tributaries (Spencer, Shovel, Jenny, and Fall creeks); 4) KBRA 
flows in the mainstem Klamath; and 5) KBRA habitat restoration actions in the tributaries to Upper 
Klamath Lake and lower basin tributaries. 

2.2.2.1 Production in Tributaries to Upper Klamath Lake 

I calculated the production of natural origin ocean age 3 fish from tributaries of Upper Klamath Lake (the 
upper basin) as described in Liermann et al. (2010).  Liermann et al. (2010) used watershed size to predict 
the unfished equilibrium population size based on a meta-analysis of multiple stocks of Chinook salmon 
throughout the western United States and Canada; they also estimated the productivity for ocean-type and 
stream-type Chinook.  I used both of these results to develop Ricker stock production functions for the 
upper basin. 

Estimates of watershed area  

The definition of usable watershed area required evaluating potential barriers to migration (Table 4).  The 
Williamson River is the main river system in the Upper Klamath Basin that, when including the Sprague 
River subbasin, comprises 79 percent of the total drainage area of the Basin (Risley and Laenen 1999).  
The Williamson River subbasin has a drainage area of approximately 3678 km2 (1,420 mi2), extending 
from its source on the eastern edge of the basin, and flowing through the Klamath Marsh, which covers 
601 km2 (232 mi2) (Risley and Laenen 1999; Conaway 2000; David Evans and Associates 2005).  The 
area of the lower Williamson River, between the Kirk Reef and UKL, covers 311 km2 (120 mi2), and is 
one of the major ground-water discharge areas in the upper Klamath Basin. 

The Sprague River is the main tributary of the Williamson River system in the Upper Klamath Basin, 
comprising approximately 4,092 km2 (1,580 mi2), which includes the North and South Forks, Fishhole 
Creek, and the Sycan River subbasins (Risley and Laenen 1999).  The upper extent of the Sprague 
subbasin, which is upstream of Beatty Gap above the Sycan River, is approximately 1471 km2 (568 mi2), 
and includes a portion of the Fremont-Winema National Forest.  The lower extent of the Sprague 
subbasin below the Sycan River is approximately 1,173 km2 (453 square miles in area), meandering 
through the lower valley for 75 miles to its confluence with the Williamson River (Conelley and Lyons 
2007). 

The Sycan River subbasin has a drainage area of approximately 1447 km2 (559 mi2).  The upper extent of 
the Sycan River subbasin above Sycan Marsh is approximately 103 square miles in area (Conelley and 
Lyons 2007).  The Sycan Marsh is predominantly a surface-water dominated wetland, measuring 
approximately 124.3 km2 (48 mi2, 30,537 acres), accepting flows not only from the Upper Sycan River, 
but from an additional drainage area of 456 km2 (176 mi2) surrounding the marsh (USFS 2005).  The 
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lower extent of the Sycan River subbasin begins below the Sycan Marsh, and is approximately 601 km2 
(232 mi2) in area (Conelley and Lyons 2007). 

The Wood River subbasin is located in Klamath County, Oregon approximately 40 miles north of 
Klamath Falls.  The subbasin has a drainage area of approximately 567 km2 (219 mi2) extending from the 
southern flanks of the Crater Lake highland within Crater Lake National Park and the Winema National 
Forest, and flowing southward through the Wood River Valley into Agency Lake (USBR 2005; Graham 
Matthews and Associates 2007).  

The total estimate of watershed size for the tributaries to UKL was 4200.96 km2 (Table 4)  Using samples 
from posterior distributions provided by Martin Liermann (Martin Liermann, NWFSC NOAA, March 28, 
2011 personal communication) as described in Liermann et al. (2010), a stock production function was 
constructed for the tributaries to UKL.  Liermann et al. (2010) used a version of the Ricker stock 
recruitment function defined in terms of the log productivity r   and the unfished equilibrium population 
size E (the value where recruitment abundance equals spawning abundance).  Liermann et al. (2010) 
found that the log productivity was different for ocean type and stream type Chinook; further, they found 
that the relationship between watershed size and E was different for ocean and stream Chinook.   

Both stream and ocean type Chinook are expected to be present in the tributaries to UKL (Dunsmoor and 
Huntington 2006); therefore, the production functions for the tributaries to UKL incorporated productivity 
(r  ) and unfished equilibrium population size (E) for a mixture of stream and ocean Chinook.  To 
implement the mixture, the proportion of ocean and stream type were able to vary in each year.  For each 
iteration i and year t of the model, a proportion of ocean Chinook pi,t was drawn at random from a 
Uniform(0,1) distribution.  

The unfished equilibrium population size was calculated for stream type Chinook using Equation 8 of 
Liermann et al. (2010) (assuming L = 0 indicating stream Chinook), Enew stream.  The unfished equilibrium 
population size was also calculated for ocean type Chinook using Equation 8 (assuming L = 1, indicating 
ocean Chinook), Enew ocean.  The mixture of ocean and stream unfished equilibrium population size Enew, i t 
for iteration i and year t was calculated as follows: 

56,7,9,� .  ;9,�56,7 <=,)6,9 +  21 − ;9,�356,7 �@A96B,9    Equation (11) 

In a similar fashion, the values of productivity rnew, i,t were formed as a mixture of ocean and stream type r 
values from Liermann et al. (2010).   

C6,7 ,9,� .  ;9,�C6,7 <=,)6,9 + 21 − ;9,�3C6,7 �@A96B,9    Equation (12) 

The values of  56,7,9,� , C6,7 ,9,�, and the spawner abundance three years previously (Si,t-3) allowed the 
calculation of upper basin adult recruits in the absence of fishing via Equation 1 in Liermann et al. (2010).  
In addition, annual variability in recruitment was modeled with a random effect wi,t. The random effect 
for annual variability in the tributaries of UKL was the same as the lower basin�9 CVI i, t-2. Finally the 
recruitment calculated to the adult returning stage was converted from adult to 3 year ocean fish (via the 
N(2.03, 0.01) expansion factor ) .  

2.2.2.2 Modeling the reintroduction to tributaries of Upper Klamath Lake 



12 
 

The reintroduction of Chinook to the tributaries of UKL was assumed to start in 2019 with fry being 
planted in the tributaries to UKL prior to dam removal in 2020.  The reintroduction process is expected to 
construct a conservation hatchery that is capable of seeding the tributaries to UKL with fry to capacity 
(Hooton and Smith 2008).  There is no fry or other juvenile freshwater stage in the model; therefore, 
stocking to capacity was modeled by assuming that the numbers of adult returns were at or above the 
unfished equilibrium population size 56,7,9,� from 2019 to 2029 for model iteration i and year t.   

2.2.2.3 Production from Iron Gate to Keno Dam 

From Iron Gate Dam to Keno Dam, the mainstem and tributaries to the mainstem (Spencer, Shovel, 
Jenny, and Fall creeks) watershed area was estimated at 1792.2 km2 (Lindley and Davis In prep).  
Posterior samples from the distributions for parameters defining the relationship between watershed size 
and unfished equilibrium population size E were used to construct the posterior predictive distribution for 
Enew given the watershed size for Iron Gate to Keno Dam using Liermann et al. (2010) and assuming 
ocean type Chinook.  

Further, the following steps were taken to modify the Ricker stock recruitment relationship under NAA to 
include the additional spawning area below Keno Dam in the DRA:   

1. Calculate the distribution of unfished equilibrium population size for the Iron Gate to Keno 
mainstem and tributaries using Equation 8 of Liermann et al. (2010) assuming a watershed size of 
1792.2 km2 and ocean Chinook, EKeno:IG 

2. Multiply the unfished equilibrium population size for adult recruits by the adult recruit to age 3 
ocean factor CF  

3. Use the distribution of Sueq calculated in Equation 9 of this document for the pre-dam removal 
estimate of unfished equilibrium population size (recruitment defined as age 3 ocean abundance). 

4. Add the unfished equilibrium abundance for habitat from Keno to Iron Gate calculated in step 1 
to the old equilibrium abundance from step 2 to calculate Sueq new 

5. Calculate a new distribution for the β parameter with the additional capacityby re-arranging 
Equation 9 

�6,7 . DE
"FGH IGJ          Equation (10) 

Because there were 1000 posterior samples for each of these quantities (EKeno:IG and Sueq ) the above 
calculations were carried out 1000 times for each iteration i of the model .  The 1000 samples of the 
distribution of βnew were used for the forecasting the productivity of the Klamath River below Keno Dam 
after 2020 (i.e., replace β in Equation 10 with �6,7).  

2.2.2.4 Modeling the effects of KBRA 

Since the Fisheries Restoration Plan under KBRA has yet to be developed, specific restoration projects 
within each of the tributary streams currently included in the model have yet to be identified.  Habitat 
restoration actions were specifically identified for the three major lower basin tributary streams (Scott, 
Shasta, and Salmon) and in the tributaries to Upper Klamath Lake.  I assumed that for the purposes of this 
model, all of the habitat restoration actions identified will have benefits beginning in 2013 and accruing 
through 2061.   
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Stakeholders identified the likelihood that annual variability in recruitment from the tributaries to UKL 
could vary with Klamath River flows.  The variation in production due to flow variability is not known 
given the lack of information on the upper basin, however.   I assumed that flow variability affected 
outmigrating UKL fish to a similar degree as the IGH hatchery fish.  Thus, the posterior distribution on 
γIGH was used as a posterior predictive distribution on the effect of flow on production in the tributaries to 
UKL.  The values of the flows at Seiad used in the retrospective analysis were normalized to have a mean 
of 0 and a standard deviation of 1; therefore, the KBRA flows used to compute annual variability in 
recruitment to age 3 form tributaries to UKL under DRA were transformed using the same mean and 
standard deviation as the Seiad series. 

Stakeholders have also identified the likelihood that KBRA actions will increase productivity between 
2012 and 2061.  The uncertainty in productivity was characterized by the posterior distribution of �K; 
thus, the posterior distribution of �K  provides a description of the range of possible productivity values in 
the lower basin along with the probability of observing those values (by definition of a posterior 
probability distribution).  I implemented the improvement in productivity due to KBRA actions in 
EDRRA by drawing samples from a truncated distribution of productivity.  By using a truncated 
distribution, the upper range of productivity values did not change, whereas the lower values of 
productivity became less likely over time.  In Figure 3, the process of drawing posterior predictive 
samples from truncated distributions is depicted.  Early in the time series, low as well as high productivity 
values can be drawn from the distribution; however, as the time series progresses lower values of 
productivity are rejected and a new draw must be made until one from the Accepted region is obtained.  
In practice, the draws were made from truncated Normal distributions via the package msm (Jackson 
2011) in the statistical programming language R (RCDT 2010).  The lower threshold value was set at the 
0 quantile in 2012 (i.e., the full distribution was sampled) and the quantile increased linearly to 0.25 by 
2061; that is, by 2061 only the upper 0.75 portion of the distribution could be sampled (lower threshold at 
quantile of 0.25).  Draws from the truncated distribution are distinguished by an asterisk on the parameter.  

For example, truncated draws from the lower basin productivity �Kare distinguished as �′∗   

A similar approach was implemented for the tributaries to UKL, where uncertainty was characterized 
through the use of posterior predictive distributions of productivity for ocean type and stream type 
Chinook presented in Liermann et al. (2010) (i.e, rnewocean and rnewstream).  The lower threshold for sampling 
in 2012 was set at the 0 quartile (the entire distribution could be sampled) and moved linearly to the 0.25 
quantile by 2061 (truncated to the upper 0.75 portion of the distribution).  The mixture of ocean and 
stream Chinook was then applied via the proportion of ocean Chinook pi,t after the draws from the 
truncated distributions of rnewocean and rnewstream.  

In a similar fashion, the values of productivity rnew, i,t were formed as a mixture of ocean and stream type r 
values from Liermann et al. (2010).   

C 6,7 ,9,�∗ .  ;9,�C6,7 <=,)6,9∗ + �1 −  ;9,��C6,7 �@A96B,9∗     Equation (13) 

Please see Appendix B for the specific steps of production of Age 3 Chinook under DRA. 

2.2.3 Assumptions to forecasting under DRA and NAA 

Multiple assumptions were made to forecast abundance under DRA and NAA: 
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1. Data used for the stock-recruit analysis and subsequent simulation modeling were based on 
current and past conditions and are also indicative of future conditions in the Lower Klamath 
Basin  

2. Stock recruitment relationships developed from the retrospective analysis will be the same in the 
future.  Any modifications to the stock recruitment relationships for the Lower Klamath Basin in 
the future will only occur as modeled (e.g., KBRA effects under DRA). 

3. Annual variability in stock recruitment in the lower basin will be of a similar magnitude to past 
annual variability in stock recruitment. 

4. The use of Liermann et al. (2010) work assumes that the Klamath system falls within the range of 
watersheds evaluated in their analysis.  The Liermann et al. (2010) work was used due to its 
incorporation of a broad range of watersheds, inclusion of stream and ocean type Chinook. and 
the explicit incorporation of uncertainty in predictions for new streams. The EDRRA model 
assumes that production from the Klamath River at the beginning of the time series could range 
from the worst to the best rivers analyzed in Liermann et al (2010). 

5. Conversion from adult abundance to age 3 abundance is valid based on data presented in STT 
(2005) (Table 1). 

6. Capacity for the Iron Gate to Keno reach calculated using Liermann et al. (2010) can be added to 
capacity below Iron Gate estimated via the retrospective stock recruitment analysis.   

7. Chinook in the Lower Basin below Keno will be predominantly ocean type. 
8. Chinook in the Upper Basin above Keno will be a mixture of ocean and stream type; the relative 

proportion of each type will vary annually. 
9. The Sycan Marsh on the Sycan River and the Klamath Marsh on the Williamson River are 

barriers to Chinook migration. 
10. Implementation of KBRA in the EDRRA model assumes that the conditions in the Klamath River 

will improve over the 50 year time period of the model. This process was modeled by removing 
the chance for low productivity in later years of the time series.  In future years, the likelihood 
that the Klamath would act like the worst rivers in Liermann et al. (2010) diminishes. 

11. Annual variability in production of age 3 ocean recruits will be highly correlated in the upper and 
lower basin.   

12. Flow variability in the Klamath River will affect production of Chinook in the upper basin to a 
similar degree as it affected survival of IGH hatchery fish.  Namely, the posterior distribution on 
γIGH was used as a posterior predictive distribution on the effect of flow on the production in the 
tributaries to UKL. 

13. Under the active reintroduction of the upper basin, production assumes adult abundances at or 
above the unfished equilibrium population size for the period 2019-2029.   

14. Default values provided in the KHRM (described in Mohr et al. In prep.) for maturation rates, 
ocean survival rates, etc. were appropriate for future Klamath Basin Chinook stocks. 

15. The fishery management is the same for DRA and NAA (please see Appendix A).  Further, it is 
fixed for the time period of the model simulations. 

16. The fishery is managed with perfect information; that is, fishery managers have perfect 
information of the abundances at each age and the proportion of hatchery fish in each age. 

17. The fishery operates perfectly; that is, the allocated catch from the fishery managers is caught to 
meet the target harvest and escapement levels.  
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3  Results 

3.1 Retrospective Analysis 

The Ricker stock-recruitment function with the index of common variation (CVI) provided a better 
explanation of the variability in the age 3 ocean recruitment (DIC = 662.8, pD = 25.3, mean deviance = 
637.5) than the base model (DIC = 683.4, pD = 28.5, mean deviance = 654.9).  The difference in DIC 
values was approximately 20 units, which is strongly supportive of the alternative model (Spiegelhalter et 
al. 2002).  The difference in DIC values was due primarily to a decrease in mean deviance in the model, 
indicating an improvement in the prediction of age 3 ocean abundance by including the CVI as a 
covariate.  Scale reduction factors indicated that samples were occurring from a stationary distribution in 
both models (i.e., values were near 1 for parameter estimates in both models).  Observed versus predicted 
plots under the alternative model indicated that predicted median ocean age 3 abundances were indicative 
of observed abundances, but as may be expected with fitting spawner-recruit relationships (e.g., Hilborn 
and Walters 1992), some additional variability remained to be explained (Figure 4).   

The CVI was estimated by capturing annual variability in hatchery survival common to both the IGH and 
TRH fingerling release groups (Figure 5).  Much of the annual variability in survival of IGH and TRH 
releases was due to the common source of variability between the two hatcheries (Figure 6), with some 
remaining variability due to hatchery specific factors.  Estimates of the standard deviation of the CVI 
provide an indicator of the magnitude of the effect on hatchery survival.  For example, TRH survival rates 
could vary from 4.8% to 0.38% for a 1 standard deviation increase and a 1 standard deviation decrease in 
the value of CVI, respectively.   

Mean survival to age 2 was higher for TRH releases (1.35%) than IGH releases (0.9%) (values obtained 
by transforming mean values of κ  in Table 5).  Summer flows in the Trinity River in July at Lewiston 
were positively related to annual variability in survival of TRH releases; the posterior distribution of γTRH 
had a mean value of 0.3 (95% CrI: -0.038, 0.613, Table 5).  Although the 95% CrI included zero, there 
was a 0.963 probability that flow was positively related to hatchery survival.  Summer flows in the 
Klamath River (July flows at Seiad) were positively related to variability in IGH releases.  The posterior 
distribution of γIGH was positive and the 95% CrI did not include 0 (Table 5); the probability of higher 
flows having a positive relationship with IGH survival in the Klamath River was > 0.999. 

The common variability index (CVI) was variable among years and matched the pattern in log hatchery 
survival rates (Figure 6).  While the pattern in the CVI may be informative, it is not known whether the 
magnitude of annual deviations is the same for natural recruitment to the age 3 ocean stage.  A parameter 
was included in the model to allow the variability from the hatchery fish (CVI) to be scaled to the natural 
recruitment via δ.  The inclusion of the δ parameter also allowed the stock recruitment function to ignore 
the CVI (e.g., if the δ value was 0).  Median posterior estimates of δ were 0.61 (95%CrI: 0.32, 0.93) 
indicating that there was a positive relationship between recruitment variability and CVI, i.e., years with 
higher survival of TRH and IGH fingerlings were concurrent with positive deviations from the mean 
stock recruitment relationship.   
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The result of the retrospective model was a stock production function that could be used to forecast the 
levels of production with uncertainty for the Klamath basin below Iron Gate Dam in the No Action 
Alternative.  The uncertainty in the stock production function is substantial, even in the absence of the 
CVI effect (i.e., assuming CVI = 0) (Figure 7).  The fishery reference points indicate the levels of 
uncertainty in the stock recruitment relationships (Table 6).  The spawning abundance that maximizes 
yield is approximately 48,000 spawners (95%CrI: 34,924, 86,141).  The level of spawner abundance that 
maximizes recruitment has a median of 58,360 (95%CrI: 39,325, 109,167), whereas the median spawner 
abundance that equals the abundance of 3 years old in the ocean was estimated at 143,660 (106,407; 
232,915).   

The Liermann et al. (2010) model was also calculated for the lower basin assuming a watershed area of 
9,653 km2 (assuming a total watershed area of 12,066 km2 for the Salmon, Shasta, Scott, Lower & Upper 
Klamath below Iron Gate and removing 20% due to watershed area draining directly into anadromous 
streams, D. Chow, NMFS, pers. comm.).  This was completed to provide a point of comparison between 
the Liermann et al. (2010) approach and existing estimates of Smsy in the lower basin. The Liermann et al. 
(2010) median estimates of Smsy assuming a 9.653 km2 watershed was 43,360 (95%CrI: 17.905, 95,500).  
In comparison, STT (2005) estimated Smsy to the adult stage as 40,700 (95% confidence interval: 32,200, 
54,100).  This result suggests relatively good agreement between Liermann and the STT (2005) analysis. 

 3.2 Spawner recruitment functions for DRA 

3.2.1 Lower Klamath Basin  

Under DRA the spawning habitat was increased by 1790 km2, which equated to an adult unfished 
equilibrium population size of 23,613 (95% CrI: 11,063.1; 47,625.1) (Liermann et al. 2010).  The adults 
were expanded into age 3 ocean recruits, which lead to redefining the capacity parameter in the Ricker 
stock recruitment relationship.  The stock recruitment relationship in the lower basin shifted due to the 
added capacity in 2020 (Figure 8).  As a result, the fishery reference points shifted to higher median levels 
(Table 7) with the median Smsy of 63,838 under DRA as compared to 48,475 under NAA and median Smax 
of 79,623 under DRA versus 58,361 under NAA.  These results were computed in the absence of KBRA 
to provide estimates of changes in the stock production function early in the time series.  

The stock production function in the lower basin shifted over the time series due to KBRA actions 
affecting productivity in the lower basin tributaries (Stillwater Sciences 2010).  The stock production 
function in 2012 was thus different than in 2061 due to the portion of the posterior distribution of α’ that 
was sampled (Figure 9).  As a result, the stock recruitment relationship shifted over the time series such 
that median recruitment was higher in 2055 relative to 2025, although uncertainty in recruitment 
remained largely unchanged (Figure 10).   

3.2.2 Tributaries to Upper Klamath Lake 

The stock production function in the upper basin was derived from assuming mixed stream and ocean 
Chinook life history types and sampling log productivities from posterior predictive distributions 
provided in Liermann et al. (2010).  The median log productivity from assuming the mixed life history 
rnew was 1.69 (95%CrI: 1.14; 2.24).  The median estimate of unfished equilibrium population size for the 
tributaries to UKL using the results of  Liermann et al. (2010) was 17,232 (95%CrI: 8,330; 30,439) for 
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stream type and 53,691 (95%CrI: 23,598; 98,891) for ocean type Chinook, whereas the mixed ocean and 
stream type estimate was 34,350 (95%CrI: 12,964; 73,304).  Restoration work in the tributaries to UKL 
was assumed to alter the distribution of rnew

  between 2012 and 2061 such that lower values of log 
productivity became less likely over this period (rnew 

*) (Figure 11).  As a result, the stock recruitment 
relationship (defined from spawner to age 3 in the ocean) in 2055 had higher recruitment of age 3 ocean 
Chinook for a given spawner abundances when compared to the stock recruitment relationship in 2025 
(Figure 12).   The difference between the 2025 and the 2055 stock recruitment relationships was most 
pronounced at spawner abundances less than approximately 33,000. 

3.3 Comparison of Alternatives 

To support the decision process, the relative benefits of performing one action over another in the face of 
parametric and environmental uncertainty were calculated.  Because the model iterations were paired (i.e., 
the same values of CVIi,t , the same value of δi, the same value of ui,j,t , etc. for hatchery j, iteration i in 
year t in NAA as in DRA), the probability that DRA was greater than NAA could be calculated (i.e., the 
number of model iterations in which DRA was greater than NAA).  If there is no benefit to one action 
over the other, the probability will be 0.5 (i.e., 50:50 chance of higher abundance); however, if the 
probability is consistently greater than 0.5, then there is support for DRA despite uncertainty in the 
absolute abundance forecast.  

I also calculated the percentage increase in abundance for each paired iteration as (DRA – NAA)/NAA * 
100%, which provided a quantitative estimate of the difference in abundance.  There were three periods 
that could have different relative levels of abundance under DRA versus NAA: the period between model 
initiation and dam removal (2012- 2020); the period after dam removal but with active reintroduction in 
the tributaries to UKL (2021-2032); and the final period when the population in the tributaries to UKL are 
assumed to be established and Iron Gate Hatchery production has ceased (2032-2061).   

Escapement in the absence of fishing was calculated by the KHRM prior to determining the harvest rate, 
and it provided an estimate of total escapement to the Klamath Basin.  The probability that forecasted 
escapement in the absence of fishing is higher under DRA than NAA between 2012 and 2020 is 0.54 
(median of the annual probabilities from 2012-2032) (Figure 13).  The probability is 0.79 from 2021- 
2032 and 0.78 from 2033 to 2061 that forecasted escapement under DRA was higher than NAA (Figure 
13).  The percentage increases in escapement of DRA relative to NAA in these three periods were 10.8% 
(2012-2020), 81.8% (2021-2032) and 81.4% (2033-2061) (Table 8).   

Escapement to the Lower Klamath Basin was marginally higher under DRA than NAA (Figure 14).  The 
probability that forecasted escapement to the Lower Klamath basin under DRA was greater than NAA 
was 0.50 between 2012 and 2020.  The probability of DRA being greater than NAA was 0.54 and 0.56 for 
the periods 2021-2032 and 2033-2061, respectively (Figure 14).  Over these three periods, the median 
percentage increases in escapement to the lower basin in DRA relative to NAA were approximately 7% to 
9% after 2021 (Table 8).   

Due to the structure of the KHRM, ocean recreational and ocean commercial harvest had the same 
relative response of DRA versus NAA (Figure 15 and 16).  The probability of increased ocean harvest 
from 2012 to 2020 was 0.54.  The improvement above 50% during the early period was due to KBRA 
restoration actions.  After dam removal and during active reintroduction (2021-2032), the probability that 
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ocean harvest was greater in DRA than NAA was 0.79.  The probability of higher harvest dropped 
slightly to 0.72 with the cessation of active reintroduction and the loss of Iron Gate Hatchery production 
after 2032 (Figures 15 and 16).  Median estimates of the percentage increase in ocean harvest due to DRA 
was approximately 9% from 2012 to 2020, rising to 63% from 2021 to 2032, and dropping to 46.5% after 
2033 (Figure 15 and 16, Table 8). 

Patterns in river harvest were similar to those for lower basin escapement, with relatively small increases 
in river harvest under DRA versus NAA (Figure 17).  Prior to 2020, river harvest was roughly equivalent 
for NAA and DRA.  The probability that DRA was greater than NAA was 0.48 prior to dam removal in 
2020 (but equal to 0.5 if one includes the iterations where DRA equals NAA).  After dam removal, the 
probability of increases in river harvest under DRA was consistent at 0.62.  The pattern in river harvest 
was due to a 25,000 limit on capacity of recreational fishers (Mohr In prep), which minimized the amount 
that the DRA and NAA runs could differ.  As a result, the median percentage increases in DRA relative to 
NAA runs were 0% during the early period (2012-2020) and increased to approximately 9% after dam 
removal (Table 8).   

Tribal harvest was similar in pattern to ocean harvest (Figure 18), which reflected the fishery allocation 
rules incorporated into the KHRM.  The probability of tribal harvest increasing under DRA was 0.54 prior 
to 2020, increasing to 0.79 during the active reintroduction period (2021-2032) and dropping down to 
0.72 afterwards (Figure 18).  Median estimates of the percentage increase in tribal harvest was roughly 
10% before 2020, climbing to 71.5% during 2021-2032, and dropping to 54.8% thereafter.   

 

4.0 Discussion 

The forecasted levels of escapement and harvest are determined by KHRM; therefore, understanding how 
KHRM operates provides some insight into the relative levels of escapement and harvest forecasted under 
NAA and DRA.  The main driver of the KHRM behavior is the F- control rule, and the rule used in the 
forecasts under NAA and DRA is an updated amendment 16 rule (Appendix A).   This rule is based on an 
optimal (i.e., escapement that produces maximum sustainable yield) escapement target after harvest of 
40,700 (STT 2005).  The updated F-control rule was developed to maximize yield under the current 
conditions (i.e., NAA), but it may not be optimal for DRA.  The application of the updated rule to DRA 
affects the results here in two ways.  First, given the additional recruitment to the fishery that arises from 
production in the Keno to Iron Gate reach and tributaries to UKL, the escapement and harvest forecasted 
under DRA were likely not managed optimally.  Higher harvest and escapement (and potentially more 
consistent harvest and escapement) may be attainable by specifying an F-control rule optimized for the 
spawner recruitment relationships under DRA.  Second, the probability of fishery closure was determined 
by F control rule and its escapement floor.  There may be a trade-off between higher probability of 
closures and higher harvest rates that would need to be explored based on the spawner recruitment 
relationships for the lower and upper basins.  Ultimately, any modification of the F-control rule would 
occur through a formal process under the Pacific Fishery Management Council, and modeling this process 
was well beyond the scope of this effort.   

The KHRM was implemented in EDRRA with simplifying assumptions to highlight differences in the 
production under NAA and DRA.  These assumptions affected the absolute estimates of harvest, and 
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attempts to compare the harvest under NAA to historical catches may be misleading.  Catch in the ocean 
and river fisheries between the mid 1990’s through 2010 had a median value of 33,725 (PFMC 2011).  
Median forecasts of harvest under NAA presented here are well above the historical catches for at least 
two reasons.  First, the ocean abundance supplied to the KHRM here is known without error; in other 
words, there is no error between the abundance in the preseason forecast and the postseason estimate.  In 
reality, the level of error in preseason to postseason is not trivial, and the ratio of preseason 
forecast/postseason estimate of age 3 Klamath River fall Chinook has ranged from an overestimate of 2.5 
to an underestimate of 0.34 in the period 1991 to 2010 (Table II-3 in PFMC 2011).  As a result, the 
fishery management process used here was able to prescribe the exact numbers of fish to be harvested to 
reach the escapement objective.  Second, the fishery described here operates perfectly; therefore the 
numbers of fish prescribed to be captured to meet the escapement objective are actually captured with 
perfect accuracy.  The result of these two simplifying assumptions of the management and the fishery are 
that the escapement returning to spawn is close to 40,700 in most years (median of 42K under NAA) 
which means that the stock is close to Smsy under NAA and producing optimally. 

I estimated  a spawner recruitment relationship from spawners to age 3 ocean fish using historical data on 
the Klamath Basin that was similar in many respects to STT (2005).  Although the recruitment was 
defined to different locations in the life history (to age 3 in the ocean here, whereas STT (2005) defined 
recruitment as adult escapement), the fishery reference points Smsy and Smax can be compared.  The bias 
adjusted mean estimate of Smsy calculated in STT (2005) was 40,700 (95% confidence interval [CI]: 
32,200; 54,100) and the bias adjusted mean estimate of Smax was 56,900 (95%CI: 42,400; 84,200).  The 
reference points estimated in the Bayesian analysis here (Table 6) were higher with broader 95% credible 
intervals relative to the 95% confidence intervals in STT (2005).  In particular, the median estimate of 
Smsy was 48,475 in the Bayesian analysis was higher than the bias adjusted mean estimate of 40,700 (STT 
2005).  If the distributions were the same, the median would be expected to be below the bias adjusted 
mean due to the shape of the lognormal distribution.   Thus although the bias adjusted mean of Smax in 
STT (2005) and the Bayesian analysis are similar, the level of Smax implied by the Bayesian analysis was 
larger than in STT (2005).   It is not surprising that the levels of Smsy and Smax differ between the two 
approaches.  First, the estimation of the stock recruitment relationship to an earlier life stage in the 
Bayesian analysis (age 3 in the ocean) will affect the estimates of log productivity.  Second, the annual 
variability in productivity was characterized differently in the Bayesian analysis than in STT (2005) 
which also affected log productivity estimates.  Reference points that use the estimated log productivity 
(e.g., Smsy) will be affected by the difference in log productivity estimates.   

Finally, one advantage of the Bayesian analysis is the incorporation of parameter uncertainty into the 
estimation approach as probability distributions (Gelman et al. 2004).  Derived quantities of the model 
can then be computed as probability distributions by integrating over the uncertainty in the parameters.  
The full posterior distribution on the derived quantity can then be evaluated for inference (e.g., McAllister 
et al. 1994, Punt and Hilborn 1997, Liermann et al. 2010).  Analyses of similar data sets under Bayesian 
and frequentist approaches may result in different results depending upon the marginal likelihood of the 
coefficient estimate.  When the information in the data on a particular parameter value are informative, 
the difference between Bayesian and frequentist inference will be small; however, when the information 
on the parameter is limited (e.g., for parameters such as Smax = β-1 estimated from spawner recruitment 
data), the differences between the two approaches are likely to be greater.   For this reason, comparison of 
approaches under Bayesian and frequentist approaches may provide different inference, and almost 
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always indicate greater uncertainty in the value of the derived quantities in the Bayesian analysis (Gelman 
et al. 2004, Congdon 2002).   

In the process of developing the tools for evaluating NAA and DRA, I computed estimates of equilibrium 
population sizes for the tributaries to UKL and the reach from Iron Gate Dam to Keno Dam.  The median 
estimates of unfished equilibrium population size using the Liermann et al. (2010) posterior distributions 
was approximately 23,000 ocean type Chinook in the Keno to Iron Gate reach and approximately 35,000 
stream and ocean type Chinook in the tributaries to UKL.  There are several other estimates of 
equilibrium unfished or fished population sizes for both the tributaries to UKL and the Iron Gate to Keno 
reach that can be used to put the estimates computed here into context.  Most recently, Lindley and Davis 
(In prep) estimated an equilibrium fished population size of 720 for the Keno to Iron Gate reach and an 
estimate of 2372 for the tributaries of UKL (Wood, Williamson, and Sprague Rivers).   Further they 
compare their estimates to calculations of equilibrium unfished population abundances in Liermann et al. 
(2010) using assumptions consistent with their model.  The assumptions in Lindley and Davis (In prep) 
differ than those made here with respect to accessibility to portions of the watershed and the spatial 
structure of Chinook populations once they become established; therefore calculations using parameters 
in Liermann et al (2010) are not directly comparable between the two works.  Finally, Dunsmoor and 
Huntington (2006) developed a tabular summary of aquatic habitat conditions in the Upper Klamath 
Basin with particular emphasis on areas above UKL.  They estimated that current habitat conditions 
above Iron Gate Dam could support approximately 14,864 spawning fall Chinook salmon and 32,706 
spawning spring Chinook salmon.  Huntington (2006) developed estimates of adult Chinook to the 
Klamath Basin upstream of IGD using five different methods and estimated between 9,180-32,040 
Chinook.  These estimates are roughly comparable to the 10,000 to 50,000 levels of Chinook escapement 
upstream of Iron Gate Dam calculated under EDRRA.  

Ultimately, the specifics of how anadromy would be restored to the Klamath Basin will require additional 
planning, and there are many details that were excluded from this analysis by necessity.  There are several 
factors that have been discussed as potentially modifying the degree to which anadromy may be restored 
to the Upper Klamath Basin.  Water quality in UKL can be problematic for salmonids with summer 
temperatures exceeding 25 C and dissolved oxygen levels at 4mg/L or below during the summer (Wood 
et al. 2006).  Thus, the conditions in UKL may be a factor in determining the type of life – history 
strategies that are successful due to acceptable windows into and out of the tributaries to UKL.  
Ceratomixta shasta currently affects natural origin juveniles migrating through the mainstem Klamath 
River.  The prevalence of the disease appears to be tied to the density of the polychaete host and the flow 
and temperature conditions under which juveniles may be exposed to the parasite (Bartholomew and 
Foott 2010).  The parasite C. shasta is also located in the Williamson River (Bartholomew and Foott 
2010), although the strain there is not virulent to Chinook.  It is not known whether the strain that is 
virulent toChinook will become established in the tributaries to UKL and affect the production potential 
of those tributaries.   

Still, recent studies suggest that with the provision of suitable passage facilities at downstream dams or 
dam removal, Chinook salmon could be re-introduced and restored to waters in the Upper Klamath Basin 
(Dunsmoor and Huntington 2006; Hooton and Smith 2008; Butler et al. 2010); further, substantial 
historical evidence shows that both Chinook salmon and steelhead trout historically used the streams of 
the Upper Klamath Basin for spawning and for juvenile rearing (Hamilton et al. 2005; Fortune et al. 
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1966).  Finally, NMFS and USFWS required anadromous fish passage as a condition for issuing a Federal 
Energy Regulatory Commission (FERC) license to operate the dams; thus, restoration of anadromy to the 
upper Klamath Basin will be an important part of the FERC relicensing process.    
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Table 1.  The recruit and spawner data  presented in Table A1 of STT (2005).  BY denotes brood year;  
N3,Sept1 denotes the abundance of progeny spawned by S in calendar year BY that survive to become 
ocean age 3 on September 1 in calendar year 3.  

BY  N3,Sept1  R3 R4  R5 R  S  R/S  
1979 423701 42235 137103 21360 200698 30637 6.6 
1980 236144 28082 56102 25246 109430 21484 5.1 
1981 106338 16737 26354 7877 50968 33857 1.5 
1982 277850 17331 61442 43414 122187 31951 3.8 
1983 776743 73352 259838 34969 368159 30784 12.0 
1984 512171 46576 181026 16450 244052 16064 15.2 
1985 391378 52017 119909 16796 188722 25676 7.4 
1986 256532 29759 84135 9353 123247 113359 1.1 
1987 148910 20399 50415 2167 72981 101717 0.7 
1988 37029 2871 13010 1569 17450 79385 0.2 
1989 33368 4921 9962 1330 16213 43869 0.4 
1990 85146 29185 13186 2539 44910 15596 2.9 
1991 91590 29578 18478 457 48513 11649 4.2 
1992 526545 129836 132474 7368 269678 12029 22.4 
1993 177305 40102 48124 1984 90210 21858 4.1 
1994 99535 24195 24978 1667 50840 32333 1.6 
1995 72062 28271 10703 229 39203 161793 0.2 
1996 74965 17305 21052 51 38408 81326 0.5 
1997 327575 84784 76782 6523 168089 46144 3.6 
1998 253386 62628 66021 1634 130283 42488 3.1 
1999 406036 74558 89368 32271 196197 18456 10.6 
2000 386121 60997 112628 14912 188537 82729 2.3 
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Table 2.  Iron Gate Hatchery (IGH) and Trinity River Hatchery (TRH) fingerling early survival (May – 
August) after release, spawner abundance from the Klamath River (KR), Trinity River (TR), and 
Unknown (UN), and the weights for Klamath River (wKR) and Trinity River (wTR) and final survival 
index s’ used in the STT (2005) analysis.  

BY  s′IGH  s′TRH  SKR STR SUN wKR wTR s′ 
1979 0.0522 0.0589 21141 8028 1468 0.725 0.275 0.0540 
1980 0.0183 0.0071 12383 7700 1400 0.617 0.383 0.0140 
1981 0.0329 0.0058 17517 15340 1000 0.533 0.467 0.0202 
1982 0.0058 0.0133 21177 9274 1500 0.695 0.305 0.0081 
1983 0.0279 0.0870 12230 17284 1270 0.414 0.586 0.0625 
1984 0.0255 0.0656 9420 5654 990 0.625 0.375 0.0405 
1985 0.0174 0.0814 12166 9217 4294 0.569 0.431 0.0450 
1986 0.0011 0.0050 15893 92548 4919 0.147 0.853 0.0044 
1987 0.0015 0.0047 26511 71920 3286 0.269 0.731 0.0038 
1988 0.0010 0.0034 29783 44616 4987 0.400 0.600 0.0024 
1989 0.0005 0.0004 10584 29445 3839 0.264 0.736 0.0004 
1990 0.0235 *0.0356 7102 7682 812 0.480 0.520 0.0298 
1991 0.0045 0.0164 5905 4867 877 0.548 0.452 0.0099 
1992 0.0447 0.0575 4135 7139 754 0.367 0.633 0.0528 
1993 0.0018 0.0035 13385 5905 2568 0.694 0.306 0.0023 
1994 0.0029 0.0070 20003 10906 1424 0.647 0.353 0.0043 
1995 0.0028 0.0053 79851 77876 4067 0.506 0.494 0.0040 
1996 0.0053 0.0106 31755 42646 6925 0.427 0.573 0.0083 
1997 0.0668 0.0419 29015 11507 5622 0.716 0.284 0.0597 
1998 0.0194 0.0083 16407 24460 1621 0.401 0.599 0.0128 
1999 0.0263 0.0265 10883 6797 777 0.616 0.384 0.0264 
2000 0.0123 0.0421 58388 24340 0 0.706 0.294 0.0211 

* imputed value: ŝ′TRH,1990 = exp(0.89sIGH,1990).  
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Table 3.  Prior distributions for parameters in the Ricker stock recruitment function.   

Parameter Prior 
α N(0, 1000) 
β N(0,1000) 
δ N(0,1000) 
κj,  j = IGH, TRH N(0,1000) 
γj, j = IGH, TRH N(0,1000) 
σE 

2 IG(0.001, 0.001) 
σCVI 

2 IG(0.001, 0.001) 
σH 

2
 IG(0.001, 0.001) 
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Table 4: Watershed area in tributaries of Upper Klamath Lake . 

Subbasin Watershed Area in km2 (mi2) 
Sycan 1,447.2 (559) 
Sycan downstream of the Marsh 600.9 (232) 
Sprague (lower, upper, and Sycan) 4,092.2 (1,580) 
Sprague without the Sycan 2,644.4 (1,021) 
Wood 567.2 (219) 
Williamson 3,677.8 (1,420) 
Williamson downstream of the Marsh 311 (120) 
 

  



31 
 

 

 

Table 5. Posterior distribution mean, median and end points for 95% credible interval (2.5%  and 97.5%) 
for parameters in the Ricker stock recruitment function.   

Parameter Mean  2.5% 50% 97.5% 
α 2.48 1.90  2.48 3.05 
β 1.73e-05  2.54e-05   1.71e-05 9.16e-06 
δ 6.12e-01 3.24e-01  6.03e-01 9.27e-01 
κIGH  -4.77 -5.41 -4.76 -4.15 
κTRH -4.30 -4.89 -4.30  -3.74 
γIGH  6.44e-01  3.35e-01   6.41e-01 9.41e-01 
γTRH 3.06e-01  -3.80e-02 3.12e-01 6.13e-01 
σE 6.08e-01 3.65e-01 6.02e-01  8.85e-01 
σCVI 1.27  8.78e-01  1.25 1.80 
σH 5.07e-01  3.68e-01  4.93e-01  7.44e-01 
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Table 6. Probability distributions of the fishery reference points: spawner abundance that provides 
maximum sustainable yield (Smsy); spawner abundance that provides maximum recruitment (Smax); and the 
spawner abundance that is equal to recruitment at age 3 in the ocean (Sueq). 

Reference Point Median 2.5% 97.5% 
Smsy 48,475 34,924.9 86,141.3 
Smax 58,360.9 39,325.6 109,167.1 
Sueq 143,660.4 106,406.9 232,915.5 
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Table 7. Probability distributions of the fishery reference points for the Lower Klamath Basin after 
removing the four mainstem dams: spawner abundance that provides maximum sustainable yield (Smsy); 
spawner abundance that provides maximum recruitment (Smax); and the spawner abundance that is equal 
to recruitment at age 3 in the ocean (Sueq).  The stock production function used the same level of log 
productivity (α’) as in Table 5. 

Reference Point Median 2.5% 97.5% 
Smsy 63,838.5 54,979.0 100,198.3 
Smax 79,623.1 53,290.6 137,876.0 
Sueq 194,448.8 128,587.1 322,711.7 
 

 

Table 8.  Percent increase in abundance due to performing DRA versus performing NAA for three time 
periods: 1) prior to dam removal (2012 – 2019); 2) during active reintroduction in Upper Basin (2020-
2029); and after active reintroduction ceases and Iron Gate Hatchery production ceases (2030-2061). 

 2012 - 2020 2021-2032 2033-2061 

Metric Median 95%CrI Median  95%CrI Median  95%CrI 
Escapement in the Absence 
of Fishing  

10.8% -79.7%, 
492.6% 

81.8% -61.7%, 
836.5% 

81.4% -59.9%, 
881.4% 

Lower Basin Escapement 0% -72.2%, 
385.7% 

6.7% -77.5%, 
474.8% 

9.2% -75.8%, 
489.6% 

Ocean Commercial Harvest 9.2% -86.7%, 
836.2% 

63.0% -61.9%, 
1618.9% 

46.5% -68.7%, 
1495.2% 

Ocean Recreational 
Harvest 

9.2% -86.7%, 
836.2% 

63.0% -61.9%, 
1618.9% 

46.5% -68.7%, 
1495.2% 

River Harvest 0% -92.3%, 
1519.7% 

8.7% -73.4%, 
2778.1% 

9.1% -77.4%, 
2753.7% 

Tribal Harvest 10.3% -88.6%, 
1009.8% 

71.5% -65.0%, 
1948.2% 

54.8% -71.0%, 
1841.0% 
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Figure 1.  Directed Acyclic Graph (DAG) of the conditional relationships between coefficients in 
equations for estimating log hatchery survival rates (h) and natural recruitment to age 3 (R) as depicted in 
Equations 3 and 4.   Ovals represent nodes that are calculated quantities whereas squares represent known 
quantities (i.e., covariates known without error).  Solid lines indicate a stochastic relationship, whereas 
dashed lines indicate a deterministic one.  All symbols the same as in Equation 3 and 4 except h.barj,t 
which is the mean log survival rate of hatchery j in brood year t, and R.bart which is the mean recruitment 
in brood year t.  The figure shows the relationship of the common variability index (CVI) and its role in 
both the equation for Recruitment and for log hatchery survival. 
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Figure 2. Flow forecasts for 2012 to 2061 under NMFS Biological Opinion (BO) and under KBRA in the 
Klamath River at Seiad during July. Flow values were standardized using the mean Klamath River flows 
in July at Seiad Valley from 1980 to 2000 (mean = 1589, sd = 944.17).  The standardized flow values 
were incorporated in the model for forecasts of abundance and harvest under NAA and DRA. 
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Figure 3.  Depiction of sampling from higher percentiles of a hypothetical productivity distribution over 
time.  Samples of productivity occur only from the Accepted region.  Early in the time series, samples 
from almost the entire distribution are accepted (Top, Accepted threshold at 0.05 quantile).  Later in the 
time series, the Accepted region is shifted to the right due to higher expected productivity (Middle, 
Accepted threshold at the 0.10 quantile).  At the end of the time series the threshold for the Accepted 
region has again shifted towards higher productivity (Bottom, Accepted threshold at the 0.25 quantile).  
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Figure 4.  Median predicted ocean age 3 recruits from the Ricker stock recruitment model and observed 
ocean age 3.   

 

0e+00 2e+05 4e+05 6e+05 8e+05

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

Observed Age 3 Ocean

P
re

di
ct

ed
 A

ge
 3

 O
ce

an



38 
 

 

Figure 5. Observed log survival rates from Iron Gate Hatchery (A) and Trinity River Hatchery (B) with 
median model predictions and 95% credible intervals (95% CrI).  
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Figure 6.  The common variability index (CVI) from 1979 to 2000, which is the annual variability 
common to both Iron Gate Hatchery and Trinity River Hatchery fingering CWT release groups estimated 
from log hatchery survival rates. 
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Figure 7. Estimated stock recruitment relationship between spawners and age 3 ocean abundance for 
brood years 1979 to 2000.  Observed data (squares), median recruitment (dark solid line) and 95% 
credible interval (dashed lines), and the 1:1 line (thin solid line) are plotted.  Model predictions assumed 
CVI equal 0.   
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Figure 8.  Lower Klamath Basin stock production relationship under the No Action Alternative (NAA) 
and under the Dam Removal Alternative (DRA).  Median recruitment (dark lines) and 95% intervals 
(light lines) are plotted for production under the two alternatives.  The DRA and NAA alternatives 
assume the same level of log productivity (α’). 
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Figure 9.  Distribution of .log productivity (α’) in the lower Klamath Basin from 2012 to 2061 due to 
habitat restoration by KBRA.   

 

 

 

2020 2030 2040 2050 2060

1.
5

2.
0

2.
5

3.
0

3.
5

Year

lo
g 

pr
od

uc
tiv

ity

median
95%CrI



43 
 

 

Figure 10.  Stock recruitment relationship in the lower Klamath basin in 2025 and in 2055 including 
increase in habitat due to dam removal and KBRA actions affecting log productivity α’ *.  Median 
production (dark line) and 95%I (light line) are plotted for each of the two years. 
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Figure 11.  Distribution of log productivity (rnew
*) of a mixed stream and ocean type life history in 

tributaries to Upper Klamath Basin from 2012 to 206.  Changes in log productivity over the time series 
are due to habitat restoration by KBRA.   
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Figure 12. Stock recruitment relationship in the tributaries to Upper Klamath Lake in 2020 and in 2055 
incorporating mixed stream and ocean type life history and KBRA actions affecting log productivity 

rnew
*.  Median production (dark line) and 95%I (light line) are plotted for each of the two years. 
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Figure 13. Probability that escapement in the absence of fishing is greater under DRA than under NAA 
from 2012 to 2061 (top).  Dashed line represents 50/50 chance of increased abundance under DRA.  
Median and 95% credible intervals for the percent increase in DRA relative to NAA from 2012 to 2061 
(bottom).  Dashed line represents no difference between DRA and NAA.   
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Figure 14. Probability that escapement to the Lower Klamath Basin is greater under DRA than under 
NAA from 2012 to 2061 (top).  Dashed line represents 50/50 chance of increased abundance under DRA.  
Median and 95% credible intervals for the percent increase in DRA relative to NAA from 2012 to 2061 
(bottom).  Dashed line represents no difference between DRA and NAA.   
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Figure 15. Probability that ocean commercial harvest is greater under DRA than under NAA from 2012 to 
2061 (top).  Dashed line represents 50/50 chance of increased abundance under DRA.  Median and 95% 
credible intervals for the percent increase in DRA relative to NAA from 2012 to 2061 (bottom).  Dashed 
line represents no difference between DRA and NAA.   
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Figure 16. Probability that ocean recreational harvest is greater under DRA than under NAA from 2012 to 
2061 (top).  Dashed line represents 50/50 chance of increased abundance under DRA.  Median and 95% 
credible intervals for the percent increase in DRA relative to NAA from 2012 to 2061 (bottom).  Dashed 
line represents no difference between DRA and NAA.   
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Figure 17. Probability that river harvest is greater under DRA than under NAA from 2012 to 2061 (top).  
Dashed line represents 50/50 chance of increased abundance under DRA.  Median and 95% credible 
intervals for the percent increase in DRA relative to NAA from 2012 to 2061 (bottom).  Dashed line 
represents no difference between DRA and NAA.   
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Figure 18. Probability that tribal harvest is greater under DRA than under NAA from 2012 to 2061 (top).  
Dashed line represents 50/50 chance of increased abundance under DRA.  Median and 95% credible 
intervals for the percent increase in DRA relative to NAA from 2012 to 2061 (bottom).  Dashed line 
represents no difference between DRA and NAA.   
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Appendix A.  Fishery Control Rule Applied in the Klamath Harvest Rate Model 

 

 

Figure A2.1.  Harvest rate as a function of escapement in the absence of fishing utilized in the Klamath 
Harvest Rate Model (Mohr et al. in Prep).  

Management of the Klamath Fishery was modeled by the Klamath Harvest Rate Model (KHRM, Mohr et 
al. in Prep.).  Integral to the KHRM is the definition of a fishery control rule that defines the harvest rate 
as a function of an unfished escapement estimate (Figure 1).  The fishery control rule described here 
provides the opportunity for a de minimis fishery even if the escapement in the absence of fishing is 
below the target stock size of 40,700 (Smsy).  
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Appendix B.  Pseudocode for running the No Action Alternative and the Dam Removal Alternative 

A. Steps to Running NAA 

Set initial abundances and parameter values 

The following steps were completed prior to running the annual forecasts of recruitment and harvest by 
drawing 1000 values from the following distributions (note that N(mean, variance) refers to a normal 
distribution with mean and variance as specified):  

1. Set initial abundances from the CDFG MegaTable (CDFG 2011) 
a. Spawning abundance in 2007 distributed as  N(61741, 25000) 
b. Spawning abundance in 2008 distributed as N(48073, 25000) 
c. Spawning abundance in 2009 distributed as  N(52499, 25000) 
d. Spawning abundance in 2010 distributed as  N(49027, 25000) 

2. Set initial abundances in the ocean in 2010 (PFMC 2011 PreSeason Report) 
a. Age 4 in the ocean in 2010 distributed as N(66500, 25000) 
b. Age 5 in the ocean in 2010 distributed as N(700, 250) 

3. Set initial proportion of natural fish in the ocean in 2010 
a. Proportion of natural age 4 in 2010, g4   = 0.5 
b. Proportion of natural age 5in 2010, g5 = 0.5 

4. Draw parameter values from samples of the posterior distribution from the Ricker stock-
recruitment model for natural production (Table 4) 

a. Productivity, α’  
b. Ricker density dependence parameter, β 
c. Strength of CVI on natural stocks, δ 
d. Standard deviation of random effect CVI, σCVI 

2 
e. The values of CVI for each year of the time series, CVI2007:2061~N(0, σCVI 

2) 
5. Draw parameter values from samples of the posterior distribution from the Ricker stock-

recruitment model for hatchery log survival (Table 4).  Hatchery production was constant over 
the 2007 to 2061 time series with IGH production of 6 million, and TRH production of 3 million 
fingerlings. 

a. Average log hatchery survival, κIGH and κTRH  
b. Parameter relating log survival to flow, γIGH and γTRH 

c. Standard deviation for residual variability on log hatchery survival, 
N2  
d. Unexplained variability of log hatchery survival u1:2, 2010:2061 

With the initial abundance estimates specified, and the vectors of parameter values specified, the dynamic 
portion of the model could be completed.   

Calculate annual production and harvest 

For iteration i = 1 to 1000 (subscript suppressed for clairity) 

For years t = 2010 to 2061 
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1. Calculate natural production of the age 3 ocean fish in year t by. 

�� = ��−3exp { �′ − ���−3 +  �
���−2 + �� }      Equation 2A13 
2. Calculate the survival rate of IGH releases for year t, sIGH, using Klamath River Biological 

Opinion flows . 

_�`N,� .   exp {ℎ�`N,�} = exp {��`N +  
���−2 + ��`N (�a�_cd,�−2) +  ��`N,�}  Equation (A2) 

3. Calculate the survival rate of TRH releases for brood year t, sTRH, using Trinity River flows  

_efg,� .   exp {ℎefg,�} . exp {�efg +  
��� h + �efg  ��ef,� h� +  �efg,�}  Equation (A3) 

4. Calculate the hatchery production to age 3 assuming age 2 survival of 0.5 (Hankin and Logan 
2010) for year t 

	g,� . 0.52 _�lg,�  6�06 +  _efg,�  3�063      Equation (A4) 

5. Calculate the total abundance of year 3 ocean fish 

	n,� . �� + 	g,�         Equation (A5) 

6. Calculate the proportion of year 3 ocean fish that are natural origin 

1n,� . fo
fop qr,o

          Equation (A6) 

7. Call KHRM  and pass  Na,t ={N3,t , N4,t , N5,t }and ga,t ={g3,t , g4,t , g5,t }  
8. In year t KHRM returns: 

a. Natural area escapement, En which is set equal to St  
b. Harvest  

i. Ocean commercial harvest, Hu 
ii. Ocean recreational harvest, Hw 
iii.  River tribal harvest, Ht 
iv. River recreational harvest, Hr 

c. Ocean Abundance in year t + 1 
i. 4 year old abundance in the ocean N’4 

ii. 5 year old abundance in the ocean, N’5 

Next year: Repeat the loop for year t+1 by returning to step 1 having obtained the ocean abundances for 
the 4 and 5 year olds returned from KHRM 

Next iteration  

2.2.3 Steps to Running DRA 

Set initial abundances and parameter values 
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The following steps were completed prior to running the annual forecasts of recruitment and harvest for 
iterations i = 1 to 1000, the subscript for iteration i is suppressed for clarity. 

1. Use initial abundances previously sampled for the NAA alternative  
a. Spawning abundance in 2007  
b. Spawning abundance in 2008  
c. Spawning abundance in 2009  
d. Spawning abundance in 2010  

2. Use  initial abundances in the ocean in 2010 previously sampled for the NAA  
a. Age 4 in the ocean in 2010  
b. Age 5 in the ocean in 2010  

3. Use initial proportion of natural fish in the ocean in 2010 from NAA 
a. Proportion of natural age 4 in 2010, g4   = 0.5 
b. Proportion of natural age 5in 2010, g5 = 0.5 

4. Lower Basin stock recruitment parameters for years 2010 to 2020 
a. Productivity drawn from truncated α’ starting in 2012 to reduce the probability of low 

productivity as a result of  KBRA 
b. Ricker density dependence parameter, β 
c. Strength of CVI on natural stocks, use draws of δ from the NAA 
d. Use the values of CVI from the NAA, CVI2010:2020 

5. Lower Basin stock recruitment parameters for 2021 to 2061 
a. Productivity drawn from truncated α’ starting in 2012 to reduce the probability of low 

productivity as a result of KBRA 
b. Ricker density dependence parameter based on additional spawning habitat from Iron 

Gate to Keno and tributaries, βnew 
c. Strength of CVI on natural stocks, use draws of δ from the NAA 
d. Use the values of CVI from the NAA, CVI2021:2061 

6. Hatchery production from 2010 to 2028.  Hatchery production was constant over the 2010 to 
2020 with IGH production of 6 million, and TRH production of 3 million fingerlings. 

a. Use draws of average log hatchery survival, κIGH and κTRH from NAA 
b. Use draws of parameter relating log survival to flow, γIGH and γTRH from NAA 
c. Use draws of unexplained variability of log hatchery survival u1:2, 2010:2028 from NAA 

7. Hatchery production from 2029 to 2061.  Hatchery production was assumed constant at TRH 
with production of 3 million fingerlings, whereas production at IGH ceases after 2028. 

a. Use draws of average log hatchery survival, κTRH from NAA 
b. Use draws of parameter relating log survival to flow, γTRH from NAA 
c. Use draws of unexplained variability of log hatchery survival at TRH  u2, 2029:2061 from 

NAA 
8. Stock recruitment parameters in tributaries to UKL in years  t = 2021, …,  2061 

a. Unfished equilibrium population size, Enew, t 
i. Draw a value of p,t from a Uniform(0,1) distribution in year t 

ii. Sample from the distribution of  Enew stream using the watershed size of 4200.96 
km2 
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iii.  Sample from the distribution of  Enew ocean using the watershed size of 4200.96 
km2 

iv. Calculate , Enew, t using Equation 17 
b. Productivity, rnew, t 

i. Sample from the truncated distribution of  rnewocean with the degree of truncation 
dependent upon the year 

ii. Sample from the truncated distribution of  rnewstream with the degree of truncation 
dependent upon the year 

iii.  Calculate rnew,t,  using Equation 18. 
 

With the initial abundance estimates specified, and the vectors of parameter values specified, the dynamic 
portion of the model could be completed.   

Calculate annual production and harvest 

For iteration i = 1 to 1000 (subscript suppressed for clairity) 

For years t = 2010 to 2020 

1. Calculate natural production of the age 3 ocean fish in year t, Rt in the lower basin using Equation 
10; however replace α’ with the samples from the truncated α’ *

 (the asterisk denotes draws from a 
truncated distribution).  

2. Calculate the survival rate of IGH releases for year t, sIGH,t using Equation 11 and calculate the 
survival rate of TRH releases for year t, sTRHt using Equation 12.  Note that the survival rates are 
the same as used in the NAA due to using the draws from the posterior distributions for 
parameters used in Equations 11 and 12.  

3. Calculate the hatchery production to age 3 assuming age 2 survival of 0.5 (Hankin and Logan 
2010) for year t using Equation 13. 

4. Calculate the total abundance of year 3 ocean fish using Equation 14. 
5. Calculate the proportion of year 3 ocean fish that are natural origin using Equation 15. 
6. Call KHRM  and pass  Na,t ={N3,t , N4,t , N5,t }and ga,t ={g3,t , g4,t , g5,t }  
7. The KHRM program returns: 

a. Natural area escapement, En which is set equal to St  
b. Harvest  

i. Ocean commercial harvest, Hu 
ii. Ocean recreational harvest, Hw 
iii.  River tribal harvest, Ht 
iv. River recreational harvest, Hr 

c. Ocean Abundance in year t + 1 
i. 4 year old abundance in the ocean N’4 

ii. 5 year old abundance in the ocean, N’5 

Next year: Repeat the loop for year t+1 by returning to step 1 having obtained the ocean abundances for 
the 4 and 5 year olds returned from KHRM 
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For years t > 2020  

1. Calculate natural production of the age 3 ocean fish in year t, Rt in the lower basin using Equation 
10; however replace α’ with the samples from the truncated α’ *

 (the asterisk denotes draws from a 
truncated distribution) and the new capacity βnew.   

�� . �� nexp { � ′∗ − �6,7�� n +  �
��� h + �� }     Equation 2A73 
2. If  t < 2032 the reintroduction program in the tributaries to UKL provides spawners (SUKL,t) at 

levels equal to or greater than capacity SUKL,t = max(Enew,t, S UKL,t) 
3. For t > 2022, calculate recruitment of age 3 ocean fish from production in the tributaries to UKL 

(RUKL,t) incorporating the truncated mixture of ocean and stream type Chinook, the common 
variability among basins (CVI), and flow related survival.  Finally, recruitment to the adult stage 
is multiplied by an adult return to age 3 in the ocean conversion factor (CF) obtained from Table 
1. 

�tuv,� . �tuv,� n exp wC. x�y∗ z1 − "o{|
}IGJ,o

~ +  �
��� h + ��lg�u�f�,� h � 
�  Equation (A8)  

4. If year t > 2028 IGH ceases to produce fall Chinook and hatchery production consists of TRH 
fish only of 3 million 

	�,� . 0.52 _efg,�  3�063        Equation (A9) 

5. Calculate total natural production of natural origin age 3 fish 

	6,� . �� + �tuv,�  

6. Calculate the proportion of lower basin natural production relative to the total natural production 
for age 3 fish in year t .  Note that values of l4,t = l3,t-1 and likewise l5,t = l4,t-1 so that the proportion 
of lower basin natural production could track the different cohorts moving through the fishery  

/n,� . fo
fop f���,o           Equation (A10) 

7. Calculate total production of age 3 fish on September 1  

	n,� . 	6,� + 	�,�         Equation (A11) 

8. Calculate the proportion of year 3 ocean fish that are natural origin 

1n,� . qI,o
qI,op q�,o

          Equation (A12) 

9. Call KHRM  and pass  Na,t ={N3,t , N4,t , N5,t }and ga,t ={g3,t , g4,t , g5,t }  
10. In year t KHRM returns: 

a. Age specific natural area escapement, Ena which is split between lower basin and UKL 
tributary production using the appropriate age-specific values of la,t . . 

�� . ∑ 56,)  /),��)�n          Equation (A13) 
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�tuv,� . ∑ 56,)  21 − /),�3�)�n         Equation (A14) 

b. Harvest  
i. Ocean commercial harvest, Hu 

ii. Ocean recreational harvest, Hw 
iii.  River tribal harvest, Ht 
iv. River recreational harvest, Hr 

c. Ocean Abundance in year t + 1 
i. 4 year old abundance in the ocean N’4 

ii. 5 year old abundance in the ocean, N’5 

Next year: Repeat the loop for year t+1 by returning to step 1 having obtained the ocean abundances for 
the 4 and 5 year olds returned from KHRM 

 

Next iteration  

 


