

An Overview of the Stream Salmonid Simulator for the Trinity River

Russell W. Perry, John M. Plumb, Edward Jones, Nicholas A. Som*, Nicholas J. Hetrick*, and Thomas B. Hardy+

U.S. Geological Survey

* U.S. Fish and Wildlife Service

+ Texas State University

Trinity DSS Workshop 29-31 March 2016

Overview

Relevance to Decision Support System

Underlying Basis and Structure

Running S3 for DSS Workshop

Model output for 2012

Why is a Fish Production Model Important?

Decision Support System - TRRP Conceptual Integrated Model

Source: James T. Peterson. 2013. Decision Support System framework for adaptive management. Presentation at TRRP 2013 Science Symposium TRRP's Scientific Advisory Board Review of Phase 1; January 8, 2013.

Why is a Fish Production Model Important?

- Quantify response of fish populations to
 - Habitat restoration
 - Flow and temperature management
- Understand possible mechanisms of response
 - Comparing alternative hypotheses
- Identify data gaps for monitoring
- Aid in decision making

Underlying Basis of S3 Model

- Habitat constrains production
- Habitat quantity and quality
 - depth
 - velocity
 - cover
 - Water temperature
- Quantity and quality affected by
 - River discharge
 - Physical habitat structure
- Habitat requirements vary by life stage

Discharge Affects Habitat Area and Carrying Capacity

Abundance Model (N-mixture) Capacity

Abundance = f(depth, velocity, cover) + f(time, location)

Mean abundance

Probability Distribution: Variation in mean abundance

Variation in space and over time

= an upper limit of this distribution; e.g., 95%

Life Stages Modeled

- Spawning to juvenile emigration
 - Egg Deposition to Emergence
 - Fry (< 55 mm)</p>
 - Parr (55 90 mm)
 - Smolt (> 90 mm)

- Ultimate Goal: complete the life cycle
 - Ocean life stage
 - Spawner migration submodel

Spatial Extent and Resolution

- The habitat unit
 - Pool, Riffle, Run
 - Mean length ~ 100 meters
- Phase 1 (FY15-16)
 - Lewiston Dam to Pear Tree (Upper 40 miles)
 - 356 habitat units
- Phase 2 (FY 17)
 - Extend to Klamath
 - Connect to Klamath S3 model

Meso-Habitat Units in S3

356 habitat units (Type: Pool, Run, LSR, MSR, SSR)

Temporal Extent and Resolution

- Extent
 - Starts at beginning of spawning
 - mid-August → mid-August
- Resolution
 - Daily time step
 - Rates are daily
 - Mortality, movement, growth

The Spectrum of Model Complexity

Demographic Processes at each time step

Running S3 for the DSS Workshop

- Status
 - Built and running
 - Just starting model calibration
- Run model for 2012
 - Match historical inputs
 - Fit model to historical outputs
 - Weekly abundance passing Pear Tree trap
 - Estimate key parameters
 - Movement, Survival

Running S3 for the DSS Workshop

- Use fitted model to evaluate scenarios
 - ROD hydrograph
 - "Natural" hydrograph
- Assess uncertainty
 - Model outputs
 - Model structure

Biological Inputs

Spawners

- 4,649 spawners
- Distributed spatially and temporally
- Based on carcass and redd surveys

Juveniles entering from

- Tributaries
- Hatchery
 - 2.6 million fry released in 2012

Spawning and Egg Life Stages

- Survival
 - Baseline natural mortality
 - Thermal Tolerance
 - Reals Jur
 - Red sperimposition

- Emergence
 - Function of degree-days
 - Beacham and Murray (1990)

Emergence Timing

Juvenile Growth Model

- Wisconsin BioEnergetics model
 - Revised consumption function
 - (Plumb et al. 2015)
 - Proportion of maximum consumption
 - Set to 0.66

Estimating Juvenile Movement and Survival Parameters

- Three parameters to estimate
 - 1 survival parameter
 - 2 movement parameters

- Fit model to data
 - Adjust parameters
 - Run model
 - Compare to weekly abundance at Pear Tree trap

Optimization routine to find best fit

Juvenile Chinook Survival

- Constant daily mortality rate (estimated)
- Upper thermal tolerance

- Other possible models:
- Density-dependence
- Predation

Juvenile Chinook Movement "Mover-Stayer" Model

Stayers

- $-P_{\text{stav}}$ = Probability of staying in habitat unit
- $-1-P_{\text{stav}}$ = probability of moving
- Density dependent
- Estimated intercept

Movers

- Exponentially distributed movement distance
- Estimated mean distance moved

Weekly Abundance at Pear Tree in 2012 Goodness of fit

Fish Length at Pear Tree in 2012 Goodness of fit

Parameter Estimates

Parameter	Estimate	95% Confidence interval
Daily survival probability	0.982	0.981 - 0.983
Mean movement distance (km/day)	11.1	10.4 – 11.9
Probability of moving (as abundance → 0 fish)	0.028	0.027 - 0.030

Mover-Stayer Model

Spatial Distribution of Daily Abundance

Juvenile Chinook abundance

SpringFallTRH SpringTRH Fall

Discharge at Pear Tree (ft³/s)

Spatial Distribution of Daily Abundance

Juvenile Chinook abundance

SpringFallTRH SpringTRH Fall

Discharge at Pear Tree (ft³/s)

Summary

- Good fit for single year
- Parameter values make sense
 - Habitat capacity affects density and movement
- Captures temporally varying habitat
 - Sensitive to flow variation
- Flexible modeling structure
 - Alternative sub-models
- Useful for evaluating management actions

Acknowledgements

US Fish and Wildlife Service
Bureau of Reclamation
Trinity River Restoration Program

All field staff!!!

Special thanks to:

Bill Pinnix Steve Gough

Aaron Martin Kyle DeJuliio

Matthew Drummond Joe Polos

Modeling Platform

- R: A Language and Environment for Statistical Computing
- Advantages:
 - Open source
 - Mature programming language
 - Rich set of statistical and graphical packages
- Disadvantages
 - Speed it's slow!
- Fortran for computationally intensive parts

Physical Drivers: Discharge and Temperature

- Varies by life stage
- Both direct and indirect links