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Abstract: Reintroduction of imperiled native freshwater fish is becoming an increasingly important conserva-
tion tool amidst persistent anthropogenic pressures and new threats related to climate change. We summarized
trends in native fish reintroductions in the current literature, identified predictors of reintroduction outcome,
and devised recommendations for managers attempting future native fish reintroductions. We constructed
random forest classifications using data from 260 published case studies of native fish reintroductions to
estimate the effectiveness of variables in predicting reintroduction outcome. The outcome of each case was
assigned as a success or failure on the basis of the author’s perception of the outcome and on whether or not
survival, spawning, or recruitment were documented during post-reintroduction monitoring. Inadequately
addressing the initial cause of decline was the best predictor of reintroduction failure. Variables associated
with babitat (e.g., water quality, prey availability) were also good predictors of reintroduction outcomes,
Jfollowed by variables associated with stocking (e.g., genetic diversity of stock source, duration of stocking
event). Consideration of these variables by managers during the planning process may increase the likelibood
Jfor successful outcomes in future reintroduction attempis of native freshwater fish.
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Identificacién de Correlaciones de Exito y Fracaso de Reintroducciones de Peces de Nativos Agua Dulce

Resumen: La reintroduccion de peces nativos de agua dulce que se encuentran en peligro se estd conuvir-
tiendo cada vez mds en una herramienta importante de conservacion frente a las presiones antropogénicas
persistentes y nuevas amenazas relacionadas con el cambio climdtico. Resumimos las tendencias encontradas
en la literatura actual sobre la reintroduccion de peces nativos, identificamos pronosticadores de resultados
de la reintroduccion e ideamos recomendaciones para administradores que intenten reintroducciones de
peces nativos en el futuro. Construimos clasificaciones de bosque aleatorio a partir de datos de 260 estudios
de caso publicados sobre la reintroduccion de peces nativos para estimar la efectividad de las variables en
la prediccion del resultado de la reintroduccion. El resultado de cada caso fue asignado como un éxito o
un fracaso con base en la percepcion del autor a partir del resultado y dependiendo de si se documento
o no la supervivencia, el desove o el reclutamiento durante el monitoreo posterior a la reintroduccion.
Abordar inadecuadamente a la causa inicial de la declinacion fue el mejor pronosticador del fracaso de la
reintroduccion. Las variables asociadas con el habitat (p. ej.: calidad del agua, disponibilidad de la presa)
también fueron buenos pronosticadores de los resultados de la reintroduccion, seguidas por las variables
asociadas con el stock (p. ej.: la diversidad genética de la fuente del stock, duracion del evento de stock).
Que los administradores consideren estas variables durante el proceso de planeacion puede incrementar la
probabilidad de resultados exitosos en futuros intentos de reintroduccion de peces nativos de agua dulce.
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Introduction

Biodiversity has been closely linked to ecosystem produc-
tivity, stability, and quality of ecosystem services (Tilman
1999; Worm et al. 20006; Pejchar & Mooney 2009). Con-
sequently, biodiversity loss is a primary concern of ecol-
ogists worldwide, particularly in the case of freshwater
ecosystems (Sala et al. 2000; Olson et al. 2002; Dudgeon
et al. 2006). Although comprising only 0.01% of global
water supply and 0.8% of Earth’s surface, freshwater
ecosystems support approximately 5% of all described
species and 43% of described fish species (Helfman 2007;
Grosberg et al. 2012). Because they support a dispropor-
tionately high number of species and are more vulnerable
to biodiversity loss than terrestrial or marine systems,
freshwater ecosystems are a priority for conservation
(Dudgeon et al. 2006).

Freshwater fish populations are vulnerable to a host
of threats (e.g., overexploitation, habitat loss, invasive
species) that may act in concert to reduce or elimi-
nate populations (Clausen & York 2008; Lyons et al.
2010; Woodward et al. 2010). Key strategies for restoring
freshwater fish populations include habitat restoration,
removal of invasive species, and supplementation via
translocation or stocking of hatchery-reared individuals
(Harig et al. 2000; Shute et al. 2005; Schooley & Marsh
2007). Although these methods aim to strengthen the
viability of existing populations, managers are increas-
ingly faced with situations where a native fish has been
extirpated from part of its historical range, leaving rein-
troduction as the only option for restoring the presence
and functionality of the species in the ecosystem.

In response to the growing use of reintroduction as
a management tool (Armstrong & Seddon 2008), broad
guidelines have been developed for conservation-based
reintroductions, including those offered by the Inter-
national Union for the Conservation of Nature Species
Survival Commission (2013). These guidelines offer a
detailed framework for all stages of reintroductions,
generalized for all plant and animal taxa. Because
reintroduction efforts involving aquatic ecosystems
present unique challenges, specific guidelines for fish
reintroductions have also been developed (Williams
et al. 1988; Meffe 1995; Dunham et al. 2011).

Although these guidelines have likely contributed to
the successful recovery of threatened fish populations,
there has been no comprehensive review of completed
reintroductions to identify specific factors associated
with success, as has been done for plant and other an-
imal taxa (Griffith et al. 1989; Fischer & Lindenmayer
2000; Godefroid et al. 2011). The identification of such
factors has the potential to improve existing fish reintro-
duction frameworks for better outcomes. Because native
fish reintroductions can be costly, often requiring captive
rearing, repeated stockings, and extensive monitoring,
high likelihood of a successful outcome can increase the
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willingness of stakeholders and decision makers to de-
vote limited resources to reintroduction efforts. Thus,
our goals were to summarize trends and effectiveness
of native freshwater fish reintroductions within the cur-
rent literature; identify predictors of perceived reintro-
duction success or failure and predictors of survival and
reproduction of reintroduced individuals; and provide
recommendations for managers attempting native fish
reintroductions in the future.

Methods

Literature Review

We used search terms related to native freshwater fish
reintroduction to locate reports of completed reintroduc-
tion efforts in 6 databases: Aquatic Sciences and Fisheries
Abstracts (ProQuest); Fish, Fisheries & Aquatic Biodiver-
sity Worldwide (EBSCO); Google Scholar; Web of Science
(Thomson Reuters); Wildlife & Ecology Studies World-
wide (EBSCO); and Zoological Record (ProQuest). Our
search was limited to publicly available studies published
in English. Studies retained for analysis described reintro-
duction of a native freshwater fish where the intent was
to establish a population and evaluated reintroduction
success with a post-reintroduction monitoring period of
>6 months. These criteria yielded 75 studies published
between 1989 and 2013, including peer-reviewed liter-
ature and reports from governmental and nongovern-
mental agencies (Supporting Information). The studies
contained 260 individual cases of fish reintroduction.
Each case was distinguished as a separate event based on
unique species, location, or method. When multiple stud-
ies reported on the same reintroduction, we combined
data reported in each paper to yield a more complete
picture of the case.

Data Collected and Definitions

Information recorded for each case included species in-
troduced and associated life history characteristics, type
and size of freshwater system, reintroduction location,
year of first fish release, and publication year. We used
these data to describe the scope of the literature review,
and some data were included in the analysis to determine
their relationship to reintroduction outcome (Table 1 &
Supporting Information).

The authors’ determinations of reintroduction out-
come (success or failure) were identified in each case
study; however, authors’ definitions of success and failure
varied according to the unique goals or objectives of each
study. To conduct a more objective analysis, we also iden-
tified 3 binary biological indicators of outcome: survival
(whether or not reintroduced fish were found alive >6
months after reintroduction), spawning (whether or not
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Table 1. Names and descriptions of variables that may contribute to success or failure of a reintroduction effort.

Variable name Type

Description

Species characteristic

Game binary
Migratory binary
Age of maturity continuous
Spawning guild categorical
Temperature guild binary
Protected binary
Stocking mechanics
Stock source binary
Remnant binary
Number stocked continuous
Oldest stocked ordinal
Years stocked continuous
Local adaptation binary
Genetic diversity binary
Reintroduction site
Addressed cause of decline binary
Non-native present binary
Hab assessed binary
Repro hab available binary
Water quality binary
Prey binary
Habitat type binary
Habitat size ordinal
Social factors
Mult stakeholder binary
Financial support binary

commercial or sport-fishing value of species

reproductive strategy (potamodromous,
anadromous, or catadromous)

age of first reproduction

broadcast spawning, host symbiosis, parental care, or
substrate specificity

warm water (daily maximum average temperature
>22 °C) or cold water (daily maximum average
temperature <22 °C)

official governmental protection status at time of
reintroduction

wild or hatchery

presence of remnant population of the species at
reintroduction site

number of individuals stocked over the course of
reintroduction

oldest fish stocked as adults, juveniles, fingerlings, or
fry and younger

number of years stocking occurs

adaption of source stock to local conditions

source stock genetically diverse

original cause of population decline or extirpation
identified and considered resolved prior to
reintroduction

presence of non-native fish species

reintroduction site assessed for suitability prior to
reintroduction

spawning and nursery habitat available

adequate water quality

sufficient prey

reintroduction in a riverine or a lacustrine
environment

spatial scale of the reintroductions

multiple stakeholder participation in reintroduction
effort
project has sufficient financial support

“Variable bad the following levels: 1, < 1000 cfs (mean annual; riverine) or <100 ba (lacustrine); 2, 1000-9999 cfs (riverine) or 100-999 ba

(lacustrine); 3, > 10,000 cfs (riverine) or = 1000 ba (lacustrine).

reintroduced fish were observed to spawn after reaching
sexual maturity), and recruitment (whether or not the
offspring of reintroduced fish were observed to join the
breeding population).

Finally, factors that might contribute to success or fail-
ure of a reintroduction were documented for each case
study (Table 1). These factors were chosen a priori based
on a preliminary review of the reintroduction literature
and the authors’ knowledge of fish biology. To ensure
consistency in interpretation, 2 reviewers independently
scored each case study for the variables under consider-
ation. Discrepancies were resolved collaboratively.

Statistical Analyses

We used chi-square tests of independence to measure
the degree of association between authors’ definitions

of success and biological measures of success (survival,
spawning, recruitment). We used Wald significance tests
to assess the relationship between length of the post-
reintroduction monitoring period and probability of a
positive reintroduction outcome (author-defined or bio-
logical measures).

We evaluated the relative importance of predictor vari-
ables in predicting reintroduction outcome using a con-
ditional random forest algorithm implemented in party
(Hothorn et al. 2006a; Strobl et al. 2007; Strobl et al.
2008) in program R (R Core Team 2012). Random forests
are a valuable tool for classifying cases according to a
binary outcome because no data must be excluded for ac-
curacy testing later, they are robust to outliers and noise,
they lack distributional assumptions, and they are able
to handle problems where the ratio of number of cases
to number of predictor variables (n:p) is low (Breiman
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2001; Cutler et al. 2007). The use of conditional inference
trees as components of the forest reduces variable selec-
tion bias when both continuous and categorical variables
are present (Strobl et al. 2009). The algorithm ran with
3000 trees to stabilize variable importance measures and
with 5 covariates in the selection pool at each node.
We calculated each variable’s importance in predicting
outcome according to the method of Hapfelmeier and
colleagues (2014). This method calculates the increase
in the misclassification rate when the algorithm’s optimal
division of cases among child nodes for a variable of inter-
est is replaced with random allocation of cases to child
nodes. The larger the increase in the misclassification
rate, the more important the variable is for correct clas-
sification of the response (Breiman 2001). Because stud-
ies did not always report covariates of interest, missing
covariate values were assigned using “surrogate” splits
(Hothorn et al. 2006b). Covariate values were available
for >70% of case studies for all but one predictor (prey)
(Table 1).

We evaluated the ability of the random forest to dis-
criminate between reintroduction failure and success us-
ing the area under the receiver operating characteristic
curve (AUC), which ranges from 0.5, for a classifier that
is no better than random, to 1.0, for a perfect classi-
fier (Hanley & McNeil 1982). Initial AUC values fell well
below 0.5, indicating that the classifier was predicting
failure (initially represented as 0) much more accurately
than success (1). Switching the value used to indicate
failure to 1 and the value used to indicate success to 0
brought the AUC values into the expected range; thus,
the reported results focus on the relationship between
predictors and reintroduction failure.

Results

Among 260 case studies of native freshwater fish rein-
troductions drawn from the published literature, 149
attempts (58%) were successful and 109 were unsuccess-
ful (42%) by the authors’ definitions. In 2 cases, authors
judged the outcome to be inconclusive. Survival of rein-
troduced fish was assessed in >99% of cases, spawning
in 87% of cases, and recruitment in 70% of cases.

Fifty-two species from 14 families were represented; 27
species carried commercial value (60% of cases) and 15
species were migratory (20% of cases). Most reintroduc-
tions took place in North America (75%), followed by Asia
(12%) and Europe (12%). A majority of reintroductions
occurred in riverine habitats (60%) and on smaller spatial
scales (75% in streams with mean annual discharge rates
of <28.3 cm or lakes with surface areas of <100 ha).

Definitions of Success and Failure

There were strong associations between author-defined
success of a reintroduction effort and confirmation of
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survival (x? = 62.1, df = 1, p < 0.0001), spawning
(x*> =95.2,df = 1, p < 0.0001), and recruitment (x* =
99.1, df = 1, p < 0.0001) among reintroduced fish. Both
survival and recruitment of reintroduced fish were doc-
umented in 86% of cases that were classified as success-
ful. No authors classified an effort as successful without
documenting survival. Failure was more broadly defined
across studies. Sixteen cases in which both survival and
recruitment were documented were considered failures.
There was no relationship between the length of time
spent monitoring a reintroduction and its perceived suc-
cess (z = -0.09, df = 243, p = 0.93) or between the
length of the monitoring and observations of survival
(z = 1.01, df = 244, p = 0.32), spawning (z = -0.10,
df = 210, p = 0.92), or recruitment (z = -0.11, df = 168,
p=09D).

Predictors of Reintroduction Outcome

Across all species, addressing the cause of a population’s
initial decline (variable addressed cause of decline [i.e.,
identifying the cause of population decline and confirm-
ing the resolution of the problem through monitoring or
restoration]) was strongly associated with author-defined
and reproductive outcomes of reintroduction (Figs. 1a-
d). Sixty-five percent of failed cases did not address the
initial cause of decline, whereas over 68% of success-
ful cases did. Because many predictors in the analysis
could be a cause of decline (e.g., presence of non-native
species, inadequate water quality), we repeated the anal-
ysis without the variable addressed cause of decline
(Figs. 1e-h). Removal of this variable did not substantially
change the relative importances of remaining variables in
predicting reintroduction outcome.

Confirming the presence of physical habitat at the rein-
troduction site (habitat assessment) was the most impor-
tant action to avoid spawning failure, and it reduced the
likelihood of recruitment failure and author-defined fail-
ure (Fig. 1). Several other aspects of reintroduction site
quality also figured into survival and reproductive failures
(Fig. 1). Presence of non-native fishes at the reintroduc-
tion site was an important predictor of author-defined
failure, but not of biological outcomes (Fig. 1).

Stocking variables were somewhat less important than
reintroduction site characteristics in predicting reintro-
duction failure, but several were among the top 5 pre-
dictors in one or more random forest classifications
(Fig. 1). Use of locally sourced broodstock and stocking
over a long period (local adaptation and years stocked)
were important in preventing mortality of the reintro-
duced population (Figs. 1b & 1f). Among the cases ex-
amined, 71% of recruitment failures and 77% of author-
defined failures were associated with hatchery-reared
fish.

As a group, intrinsic species characteristics affected
reintroduction outcome the least. Migratory species
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Figure 1. Ten most important variables in random forest classifications of (a, e) author-defined failure and (b, f)
Jailures of survival, (c, g) spawning, and (d, b) recruitment on reintroductions of all fresbwater fish species pooled
(0.0, least effect; 1.0, most effect). In a-d the variable cause of decline was included, whereas in e-b it was not.
Variable definitions are in Table 1.
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more commonly survived for >6 months after reintro-
duction than nonmigratory species (94% vs. 83%). Al-
though it did not predict reproductive failures, spawn-
ing guild affected prediction of author-defined failures.
All 8 cases of species exhibiting parental care as a re-
productive strategy succeeded, whereas cases involv-
ing other guilds (broadcast spawners [# = 56], host
symbionts [#n = 12], and substrate-specific spawners
[n = 177]) were perceived as failures in 40-50% of
cases.

Because half of cases (130 cases) involved species in
the family Salmonidae, additional random forest classifica-
tions were constructed for salmonids and nonsalmonids
separately (Fig. 2). Neither analysis addressed the cause
of decline as a predictor variable due to overlap of this
variable with other predictors. Salmonid results differed
considerably from nonsalmonid results, but for both
groups, reintroduction site characteristics and stocking
variables were more influential than species characteris-
tics. Protected status was the only species trait that had
a strong relationship with author-defined reintroduction
outcome: reintroduction attempts of nonsalmonids with
governmental protection were more prone to failure than
those without protection (Fig. 2e). Migratory life history
was an important predictor of salmonid survival; migra-
tory species survived at slightly higher rates (survival in
97% of cases) than nonmigratory species (survival in 93%
of cases).

Among reintroduction site characteristics, pre-
reintroduction habitat assessment (habitat assessment)
remained important in differentiating failures from suc-
cesses in salmonid reintroductions (Figs. 2a, ¢, & d).
However, water quality was the most influential site char-
acteristic in nonsalmonid reintroductions; inadequate wa-
ter quality was linked to lack of survival, spawning, and
recruitment (Figs. 2f-h).

Genetic features of the source stock (genetic diver-
sity and local adaptation) rose in importance as predic-
tors of mortality, recruitment failure, and author-defined
failure in both salmonids and nonsalmonids in the split
analyses. Salmonids had higher survival when the source
stock was adapted to local conditions. Spawning failure in
nonsalmonids and recruitment failure in both groups oc-
curred more often with use of genetically diverse stocks.
The age of the oldest individuals stocked also became
important in the split analyses; the proportion of cases
exhibiting recruitment failure decreased monotonically
as age of the oldest individuals stocked increased (Figs. 2c
& 2d).

Classifiers ably discriminated both author-defined and
biological failures from successes on the basis of AUC
values, which ranged from 0.84 to 0.91. All classifiers
would be considered excellent (AUC > 0.8) predictors
of reintroduction failure under the framework of Hosmer
and Lemeshow (2000).
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Discussion

Measurement of Reintroduction Success

The strong associations we found between author-
defined success and observations of survival and repro-
duction reinforce the perception that these are popu-
lar benchmarks for success. Survival and reproduction
are central to the goal of most reintroduction programs,
which is to establish a self-sustaining population (Robin-
son & Ward 2011). However, reintroduction efforts com-
monly have more nuanced goals, such as a particular
rate of survival or population growth, that are too vari-
able to have been included in this broad analysis. For
example, failure was declared in some cases because of
the presence of non-native species or inadequate pop-
ulation growth (Harig et al. 2000; Wu et al. 2008), de-
spite survival and reproductive success. The time frame
over which success or failure is judged is also important;
lack of observed reproduction even after several years of
monitoring may not be sufficient to signal reintroduction
failure in long-lived species.

Based on author-defined success, the ratio of successes
to failures in the 260 reintroduction attempts included in
this analysis was biased toward successes (58% and 42%,
respectively). Successes are likely to have a higher publi-
cation rate than failures because authors desire to inform
others of factors that led to reintroduction success and to
portray involved parties favorably. A review of transloca-
tions of herpetofauna in New Zealand reported that the
rate of success for published projects was much higher
than the rate of success for all translocations, and success-
ful projects were more likely to be published than failed
projects or those with uncertain outcomes (Miller et al.
2014). Similarly, a review of the success of animal rein-
troductions showed that 47% of published case studies
were considered successful, but the authors believed fail-
ures were underreported (Fischer & Lindenmayer 2000).
Thus, the sample of published failures in our analysis may
be a small fraction of all failed reintroductions. Further-
more, although the number of publications related to na-
tive fish reintroductions increased substantially between
1989 and 2013 (Supporting Information), it is realistic to
assume that many reintroductions are not reported in the
literature. Thus, it seems reasonable to conclude that the
results of our analysis are representative of the available
literature, but perhaps not of all fish reintroductions.

Environmental Variables

Identifying and addressing the initial cause of decline
is one of the most important actions to take to avoid
reintroduction failure. This contention is supported by
our results with native freshwater fish and by published
work for other taxa (Fischer & Lindenmayer 2000). The
strength of the association between addressing the initial
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cause of decline and failure suggests that managers should
carefully research which factors led to declines in the
species they plan to reintroduce. Because factors leading
to species loss can be multifaceted, complex, or difficult
to identify, it may be equally important to confirm that
factors suspected of contributing to the initial cause of de-
cline have been addressed. Reintroduction plans should
be tailored to address issues specific to the species and
location in order to improve their odds of success.

Presence of non-native species at a reintroduction site
can threaten survival, growth, and reproduction of rein-
troduced fish through both competition for resources
and predation (Al-Chokhachy et al. 2009; Impson 2011).
Presence of non-native species was an important predic-
tor of author-defined failure for all species (Fig. 1) and
of reproductive failures in non-salmonids (Fig. 2). The
importance of non-native species to authors’ assessment
of outcome may have been driven by authors’ chosen
success criteria because non-native species was not an
important predictor of most biological outcomes (Harig
et al. 2000; Mukai et al. 2011). Invasive species are a
serious threat to biodiversity, second only to habitat loss
(Walker & Steffen 1997). The minor effect of non-native
fish on most biological outcomes we found is puzzling,
but it may be due to the diversity of species, habitats, and
life histories we considered.

Biophysical variables, especially the presence of repro-
ductive habitat, were important predictors of reintroduc-
tion outcomes. Without spawning and nursery habitat,
a population cannot reproduce and establish (Monner-
jahn 2011). Habitat assessments have been strongly rec-
ommended to help managers select reintroduction sites
containing necessary habitat for reintroduced species to
complete their lifecycles (Williams et al. 1988; Dunham
et al. 2011). Most studies identified the selection of rein-
troduction site as an important contributing factor to sub-
sequent reintroduction outcome (e.g., Burt 2007; Goren
2009). If habitat was not available at the reintroduction
site, authors often described ongoing habitat restoration
efforts (Philippart et al. 1994; Kirschbaum et al. 2011;
Monnerjahn 2011). To improve the odds of reintroduc-
tion success, all life history stages should be supported
by suitable biophysical conditions (e.g., substrate, wa-
ter quality, prey availability) in the reintroduction sites
selected during the planning process.

Stocking Variables

In general, stocking variables were less powerful pre-
dictors of reintroduction failure than environmental vari-
ables. Among salmonids in particular, stocking fish from a
locally adapted source reduced mortality in reintroduced
populations. Genetic diversity of source stock had mod-
erate importance among outcomes for both salmonids
and nonsalmonids; less diverse stocks typically exhibited
stronger reintroduction outcomes. The literature sup-
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ports the importance of population genetics for rein-
troduction success and highlights the problems of in-
breeding and outbreeding depression that can come from
improper choice of source stocks (Leberg 1993; Gum
et al. 2009; Moyer et al. 2009; Sousa et al. 2010; Huff et
al. 2011). Choice of appropriate genetic composition of
stock can be complicated because there are many factors
to consider including rarity, ecological compatibility, ge-
ographic location, and genetic diversity (Minckley 1995;
Weeks et al. 2011). Despite this complexity, it appears
that managers realize the potential importance of genet-
ics to the ultimate success of reintroduction attempts
because 225 of the 260 cases examined reported account-
ing for genetic diversity or local adaptation in choosing
reintroduction stock.

Although most stocking variables were only moder-
ately important in predicting reintroduction failure, years
of stocking ranked among the top predictors of mortality
for reintroductions of all species and of spawning and
recruitment failure among salmonids. This result suggests
that repeated stocking improves establishment probabil-
ity, as has been found in other studies (Hilderbrand 2002;
Sheller et al. 2006). If fish are stocked annually for several
years, they may be more likely to encounter a favorable
year for survival or reproduction (Lyon 2012). Popula-
tion modeling of cutthroat trout (Onchorbynchus clarki)
shows that stocking in multiple years can compensate for
other stocking practices (e.g., low number stocked, small
size of stocked fish) that might otherwise reduce prob-
ability of population persistence (Hilderbrand 2002).
Longer reintroduction programs may also indirectly in-
dicate more effort and resources available, which could
improve the odds of success.

Intrinsic Species Characteristics

Although each predictor included in the analysis was
expected to influence reintroduction success, intrinsic
characteristics of the reintroduced species were not par-
ticularly significant. The exception to this trend was that
government-protected status was the top predictor of
overall failure in nonsalmonid reintroductions. Species
with protected status at the time of reintroduction may
have characteristics that make them inherently more sus-
ceptible to extinction, including naturally small distri-
butions and a high degree of ecological specialization
(Angermeier 1995).

Overall, however, the results suggest that the species
being reintroduced is less important to success than the
habitat chosen for the reintroduction. Given the presence
of habitat and adequate stocking practices, the fish should
survive and reproduce. These results contrast somewhat
with the findings of reviews of reintroductions in other
taxa, which have identified both environmental charac-
teristics and species characteristics as important predic-
tors of reintroduction success (Griffith et al. 1989; Fischer
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Step 1: Initial assessment
Identify cause of decline — can it be addressed prior to reintroduction?
Identify species habitat requirements
Determine criteria for reintroduction success (e.g. population size, recruitment)
Identify potential stakeholders and initiate collaboration
Secure funding required for all steps of reintroduction project

v

Step 2: Site selection
v' Determine site suitability: do present conditions support the full life cycle of the species?
» Key areas of focus: spawning and nursery habitat, water quality, prey availability, absence of
introduced predators or competitors
v’ If asite is not currently suitable, is there potential for restoration?

v

» single, wild, local stock preferred
v Determine stocking plan

v’ Initiate reintroduction

Step 3: Reintroduction methodology
v Obtain stock from suitable source population

» repeated stocking for 3-10 years; older fish if introduced predators or competitors present

Identify

v

alternate

Step 4: Post-reintroduction monitoring

site or initiate
habitat restoration

v Assess population, habitat, and community regularly
v’ Evaluate effectiveness of methodology in achieving reintroduction goals
v" Employ adaptive management

Adjust
methodology

v

Step 5: Success achieved
« All criteria for success are met

¢ Implementation of long term monitoring

Figure 3. Recommended process for native freshwater fish reintroductions. Actions with strong influence on

reintroduction outcomes are in bold.

& Lindenmayer 2000; Godefroid et al. 2011). However,
of these only Godefroid et al. (2011) used a multivariate
analysis to compare relative importance of predictors as
we did, and the majority of significant variables in their
study were also environmental.

Recommendations for Future Reintroductions

Although broad reintroduction guidelines for plant and
animal taxa exist (Williams et al. 1988; Meffe 1995;
IUCN/SSC 2013), native freshwater fish reintroductions
may require a more specific framework. We identified
key variables that potentially influence outcomes of na-
tive freshwater fish reintroductions, which may help
managers design and deploy more successful reintroduc-
tion efforts in the future.

Our results suggest that environmental variables (e.g.,
suitable biophysical conditions, availability of spawning
and rearing habitat) and to a lesser extent stocking vari-
ables (e.g., quantity and frequency of stockings, size of
stocked individuals) have important associations with
reintroduction outcomes. We recommend that managers
consider these aspects at each step of the reintroduction
process when planning and implementing reintroduction
attempts within specific systems (Fig. 3).

Although environmental variables are not always easy
to manipulate, managers should focus on addressing
them because these are the variables most strongly re-
lated to reintroduction outcome. By selecting sites that
have not been affected by the initial cause of species
decline, contain few or no non-native species, and pro-
vide adequate habitat, managers can improve the odds of
reintroduction success. If ideal sites do not exist, attempts
to create more suitable sites through management ac-
tions (e.g., non-native species removal or control, habitat
improvement projects, etc.) may improve reintroduction
outcome (Kitazima et al. 2011; Mukai et al. 2011). Knowl-
edge of current habitat requirements and cause of species
decline will be valuable information for managers during
this process, and pre-reintroduction assessments should
be conducted (Dunham et al. 2011).

Stocking variables are more easily manipulated by man-
agers and can have a moderate impact on reintroduction
outcome. Managers may be able to partially compensate
for suboptimal environmental conditions through manip-
ulation of stocking variables. Stocking practices must be
carefully selected for each situation based on knowledge
of the species in question and the system in which the
reintroduction will occur (Hilderbrand 2002). Genetics
should also be considered when selecting stocks for a

Conservation Biology
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reintroduction attempt (Frankham 1995; Frankham 2005;
Weeks et al. 2011), and salmonid reintroductions should
place particular emphasis on obtaining locally adapted
stock.

Finally, identification of appropriate success criteria,
involvement of multiple stakeholders, and acquisition of
sufficient funding can be important aspects of a success-
ful reintroduction attempt, particularly if they influence
a program’s ability to use suitable reintroduction sites
and stocking practices (Shute et al. 2005; Kitazima et al.
2011). Although our results did not show that involve-
ment of stakeholders is directly tied to reintroduction
outcome, resolution of conflicts among stakeholders may
be necessary to address the initial cause of population
decline (Wu et al. 2008; Ingendahl et al. 2010). Simi-
larly, financial concerns did not carry much predictive
weight, but lack of adequate funding could influence
a program’s ability to conduct full habitat assessments,
remove non-native species, or stock adequate numbers
or sizes of fish (Harig et al. 2000; Al-Chokhachy et al.
2009; Impson 2011). The ultimate goal of a reintro-
duction attempt should be the establishment of a self-
sustaining population. Accordingly, in addition to being
an important step toward gaining knowledge to improve
future reintroduction efforts, long-term monitoring of
reintroduced populations is an important component of
a successful reintroduction program (Schram et al. 1999;
Zymonas 2011). Long-term monitoring is required to de-
tect changes in population trajectory occurring after ac-
tive reintroduction has ceased and may improve success
via the application of adaptive management techniques
(Bearlin et al. 2002).
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