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N-mix for fish: estimating riverine salmonid habitat selection
via N-mixture models
Nicholas A. Som, Russell W. Perry, Edward C. Jones, Kyle De Juilio, Paul Petros, William D. Pinnix,
and Derek L. Rupert

Abstract: Models that formulate mathematical linkages between fish use and habitat characteristics are applied for many
purposes. For riverine fish, these linkages are often cast as resource selection functions with variables including depth and
velocity of water and distance to nearest cover. Ecologists are now recognizing the role that detection plays in observing
organisms, and failure to account for imperfect detection can lead to spurious inference. Herein, we present a flexible N-mixture
model to associate habitat characteristics with the abundance of riverine salmonids that simultaneously estimates detection
probability. Our formulation has the added benefits of accounting for demographics variation and can generate probabilistic
statements regarding intensity of habitat use. In addition to the conceptual benefits, model application to data from the Trinity
River, California, yields interesting results. Detection was estimated to vary among surveyors, but there was little spatial or
temporal variation. Additionally, a weaker effect of water depth on resource selection is estimated than that reported by
previous studies not accounting for detection probability. N-mixture models show great promise for applications to riverine
resource selection.

Résumé : Les modèles qui formulent des liens mathématiques entre l’utilisation d’habitats par les poissons et les caractéris-
tiques des habitats sont utilisés à différentes fins. Pour les poissons de rivière, ces liens sont souvent présentés sous forme de
fonctions de sélection de ressources avec des variables comme la profondeur et la vitesse de l’eau et la distance du couvert le plus
proche. Les écologistes reconnaissent maintenant le rôle que joue la détection dans l’observation d’organismes, et le défaut de
tenir compte d’une détection imparfaite peut mener à des inférences erronées. Nous présentons un modèle de mélange de N
souple pour associer des caractéristiques de l’habitat à l’abondance de salmonidés de rivière qui estime simultanément la
probabilité de détection. Notre formulation a aussi l’avantage de tenir compte des variations démographiques et peut générer
des énoncés probabilistes concernant l’intensité de l’utilisation de l’habitat. En plus des avantages conceptuels, l’application du
modèle à des données de la rivière Trinity (Californie, États-Unis) donne des résultats intéressants. S’il est estimé que la détection
varie selon la personne qui réalise le relevé, il y a peu de variation spatiale ou temporelle. En outre, l’effet estimé de la profondeur
de l’eau sur la sélection de ressources est plus faible que ce dont font état des études antérieures qui ne tiennent pas compte de
la probabilité de détection. Les modèles de mélange de N sont très prometteurs pour des applications touchant à la sélection de
ressources dans les cours d’eau. [Traduit par la Rédaction]

Introduction
Coupled physical and biological models often focus on interac-

tions of target species with their environment for the purposes of
exploring emergent properties (Harvey and Railsback 2009), eval-
uating management scenarios (Sandoval-Solis et al. 2013; Gard
2014), or predicting effects of future climate change (Holsinger
et al. 2014). Key inputs to these models are information on the
association of species with habitat characteristics, and quantify-
ing these relationships allows dynamic models to simulate indi-
vidual or population responses to physical habitat change. As
such, an essential component of model construction is mathemat-
ically linking habitat quality to the model’s spatial domain as a
function of physical variables (Scheuerell et al. 2006).

Habitat models are commonly labeled as species distribution,
resource selection, or habitat suitability models, and the last sev-
eral decades have seen tremendous contributions regarding meth-

ods for modeling habitat quality and use as a function of physical
variables. Initial methods relied on professional judgement (Bovee
1986), which has been modernized via improvements that include
fuzzy inference methods and rule sets (Ahmadi-Nedushan et al.
2008; Conallin et al. 2010). Quantitative methods have become
prevalent, with fisheries applications beginning with univariate
frequency analysis (i.e., habitat suitability curves; HSC) (Hayes and
Jowett 1994; Som et al. 2015). The suite of quantitative methods
has continued to grow and includes applications of generalized
linear models (Alldredge and Dasgupta 2003; Labonne et al. 2003),
pattern recognition methods such as neural networks (Brosse
et al. 1999), and more complex Bayesian hierarchical models
(Boone et al. 2012). Methods have even been proposed for data
containing presence-only observations (Phillips et al. 2006; Royle
et al. 2012), which can be common in species distribution studies
(Hefley and Hooten 2016), though some controversy remains re-
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garding theoretical aspects of these models (Hastie and Fithian
2013). Given the breadth of methods available, the literature has
hosted numerous methods comparisons (e.g., see Boyce et al. 2002;
Baasch et al. 2010) and reviews (Ahmadi-Nedushan et al. 2006;
Newcomb et al. 2007).

Ecologists and resource managers have recognized the role that
detection plays in abundance estimation studies. It is now well
understood that spurious ecological inference can result from a
failure to account for imperfect detection (MacKenzie 2005; Dénes
et al. 2015), particularly when factors driving abundance also af-
fect detectability (Kéry and Royle 2010). Despite this recognition
and various methods available to account for imperfect detection,
many studies still fail to account for detection efficiency (Kellner
and Swihart 2014). It appears that accounting for detection in
species distribution studies has lagged behind other ecological
pursuits (Lahoz-Monfort et al. 2014), though examples of species
distribution studies incorporating detection are emerging (Hefley
and Hooten 2016; Guillera-Arroita 2017; Koshkina et al. 2017).

Juvenile salmonids are no exception to the detection efficiency
issue, as few sampling methods are 100% efficient (Sethi and
Benolkin 2013). There are a variety of sampling and survey meth-
ods available to estimate detection efficiency, but many are not
suitable for assessing habitat use at microhabitat spatial scales
(patches on the order of a few square metres). Mark–recapture
methods have a prolific legacy of fisheries applications to account
for imperfect detection, but the assumptions and inferences asso-
ciated with these methods are better suited for survival and abun-
dance over larger spatial and temporal scales (e.g., Letcher and
Horton 2008; Perry et al. 2010). Multipass and removal methods
are frequently used to asses detectability while enumerating sal-
monids in lotic environments, but the assumptions of removal
methods are difficult to fulfill (Bryant 2000; Rosenberger and
Dunham 2005), leading to estimates that are not only frequently
biased, but biased according to habitat and species characteristics
(Peterson et al. 2004). This is particularly problematic when the
inference goal is relating local abundances of fish to fine-scale
habitat variables. Further, removal methods are commonly col-
lected via electrofishing techniques that can result in musculo-
skeletal trauma of both target and bycatch species (Panek and
Densmore 2013), and hence electrofishing might not be possible
when sensitive species inhabit sampling areas. Telemetry has also
been recently used to asses characteristics of riverine fish habitat
use (Capra et al. 2017), but telemetry experiments are expensive to
conduct (requiring specialized equipment), generally incorporate
relatively small samples sizes, can negatively impact fish im-
planted with transmitters (Jepsen et al. 2015), and might be better
suited to asses broader-scale demographics like movement and
survival (Ebner and Thiem 2009).

N-mixture models (Royle 2004) are a class of models that hold
promise for assessing juvenile salmonid habitat use at smaller
scales. These models use site-specific replicated point counts to
estimate both detection probability and abundance. Although the
origins of N-mixture models lie in population abundance estima-
tion, they have proven useful for quantifying how abundance
varies with habitat covariates (Graves et al. 2011), while simulta-
neously accounting for imperfect detection (Kéry 2008). The ben-
efits of N-mixture models are numerous, including flexibility
regarding parametric distributions for the abundance and detec-
tion components of the model and the ability to include the same
covariates for both abundance and detection (Kéry 2008). Addi-
tionally, N-mixture models obviate the need for marking or iden-
tifying individuals (Kéry 2008), a key advantage for their use with
juvenile salmonids that are often too small for marking and too
difficult to re-identify. Occupancy (presence–absence) models also
account for imperfect detection (MacKenzie 2005) without the
need to re-identify individuals and have proven useful in model-
ing the distribution of riverine salmonids (Rodtka et al. 2015) and
other stream fishes (Ferreira et al. 2016). However, by incorporat-

ing counts instead of presence–absence observations, N-mixture
models estimate the intensity of use by fish at survey sites rather
than only the probability of presence (Sethi and Benolkin 2013).

N-mixture models assume that site-specific abundance follows a
count (e.g., Poisson) distribution where the mean abundance can
be expressed as a function of habitat covariates. However, site-
specific abundance will vary through space and time owing to
factors other than habitat. For example, interannual variation in
juvenile salmonid abundance is driven by parental spawner abun-
dance, whereas intra-annual variation is induced by mortality and
migration (for anadromous salmonids). Consequently, when pop-
ulation abundance is low, suitable habitat may remain unoccu-
pied, whereas at high population abundance, competition may
push individuals into suboptimal habitat. Variation in abundance
over and above that explained by habitat covariates can be incor-
porated into N-mixture models in a number of ways, including
random effects (Latimer et al. 2006), zero-inflated Poisson models
(Zuur et al. 2009), or by explicitly modeling the spatiotemporal
evolution of abundance (Conn et al. 2015). Overdispersion is a
commonly encountered issue in models of ecological count data
(Martin et al. 2005) and occurs when the variance is greater than
that specified by a model’s mean and variance structure (Faraway
2006). For example, overdispersion in the detection component can
be induced by lack of independence among individuals (Martin et al.
2011) or can occur in count and detection components when impor-
tant covariates are not modeled (Kéry and Schaub 2012, p. 82). Al-
though N-mixture models provide a powerful tool for understanding
how abundance varies in response to habitat covariates, extensions
allowing for different sources of variation are needed to adequately
model variation in the data (Wu et al. 2015).

For riverine fish, habitat quality is commonly modeled as a
function of the depth and velocity of water and the distance to
nearest cover (Persinger et al. 2011). These functions allow relative
amounts of habitat to be summarized over spatial units for appli-
cations to population dynamics models that link habitat amounts
to density-dependant demographics parameters. The size of spa-
tial units can vary widely depending on the application and target
species, with common examples in lotic applications ranging
from tens (Gard 2014) to thousands (Heath et al. 2013) of metres in
stream length. Habitat models in this context are often summa-
rized as habitat suitability indices (HSI). HSI values range between
0 and 1, with values closer to 1 indicating desirable habitats likely
to be selected by the focal species, and values closer to 0 suggest-
ing poor-quality habitat that may be avoided.

Herein, we develop a field sampling design and associated sta-
tistical model for estimating abundance of juvenile salmon in
relation to microhabitat variables and present an example appli-
cation with data from the Trinity River, California, USA. The field
sampling design was novel in that two-dimensional hydrodynamic
models were used a priori to select sampling sites that yielded
contrast in the habitat covariates of water depth, velocity, and
distance to cover. A double observer snorkel survey was used to
make independent counts of juvenile salmonids at selected sites.
We then developed an N-mixture model with a binomial sampling
protocol designed to estimate (i) spatial and temporal variance in
abundance over that accounted for by habitat covariates, (ii) over-
dispersion in count data, and (iii) diver-specific detection effi-
ciency. The model was implemented in a Bayesian framework
that allowed the variance in abundance to be modeled via a zero-
inflated Poisson distribution with spatial and temporal random
effects and for overdispersion to be estimated in both the abun-
dance and detection components of the model. We also highlight
how our model can be naturally summarized for applications to
population dynamics modeling.
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Statistical model

N-mixture models
N-mixture models are a general class of models that assume ob-

served data arise via a hierarchical structure working on a metapo-
pulation (i.e., a collection of spatially distinct local populations; Royle
and Dorazio 2008, p. 269). The first process is the unobserved local
abundance “state process”, and the second is an observation process
leading to the observed counts. Metapopulation-level parameters
drive local abundances and detection probabilities. The most
standard implementation of the N-mixture model is the Pois-
son binomial (Kéry and Schaub 2012, p. 385), where local abun-
dances (Ni) follow a Poisson distribution with mean �i, and
replicated counts (Ci,k) follow a binomial distribution (with detec-
tion probability pi,k) conditional on the local abundance:

(1)

[Ni|�i] � Poisson(�i)
log(�i) � xi

′�

[Ci,k|pi,k, Ni] � binomial(pi,k, Ni)
logit(pi,k) � vi,k

′ �

where i references location, k references sampling occasion, x and
v are design matrices containing covariate values, and � and �
are vectors of regression parameter values. In this formula and
throughout, square brackets ([]) designate a probability distribu-
tion, and vertical bars (|) indicate a conditional probability. As is
common, the linear predictors for the Poisson mean and binomial
detection probability are expressed as their canonical link func-
tions, the log and logit (logit(p) = log(p(1 – p)–1)), respectively.

Mixed effects zero-inflated Poisson binomial mixture model
We next extend the model in eq. 1 to represent the abundance

process as a zero-inflated Poisson distribution, akin to Wenger
and Freeman (2008):

(2)

[Ni|�i, �i] � Poisson(�i�i)
[�i] � Bernoulli(�i)
log(�i) � xi

′�

logit(�i) � zi
′�

[Ci,k|pi,k, Ni] � binomial(pi,k, Ni)
logit(pi,k) � vi,k

′ �

where �i � �0, 1�, �i is the probability of an observation having a
strictly positive Poisson mean, z is a design matrix containing
covariate values, � is a vector of regression parameter values, the
linear predictor for � is expressed as the canonical logit link
function, and all other terms are as in eq. 1. In this formulation,
zeros could arise from either the zero-inflation or Poisson mean
component of the abundance process; the Bernoulli trial could
result in a 0 (�i = 0) bounding Poisson draws to a single outcome of
0, or the Poisson mean could be a small enough real number to
result in stochastic outcomes of 0 (with �i = 1):

(3)
[Ni � 0] � (1 � �i) � �i exp(��i)
[Ni � n|n 	 0] � �i exp(��i)(�i)

n(n!)�1

and we return to these probabilities later for population dynamics
model applications.

Finally, we extend our model’s linear predictors to account for
our spatial and temporal random effects (Latimer et al. 2006),
overdispersion (Wu et al. 2015), and an offset to account for vari-
ation in the size of areas sampled.

(4)

[Ng|�g, �g] � Poisson(�g�g)
[�g] � Bernoulli(�g)
log(�g) � xg

′ � � 
t � �s � �i � log(Ai)
logit(�g) � zg

′ � � 
t � �s

[Cg,k|pg,k, Ng] � binomial(pg,k, Ng)
logit(pg,k) � vg,k

′ � � �t � �s � �i,k

[�] � N�0, �

2� [�] � N�0, ��

2� [�] � N�0, ��
2�

[	] � N�0, �

2� [
] � N�0, ��

2�
[�] � N�0, ��

2� [�] � N�0, ��
2� [�] � N�0, ��

2�

where A represents the size of area sampled, g denotes the i,t,s
index representing each sample’s (i) spatial level (s) and temporal
level (t). Random effects distributions are logit-normal on the re-
sponse scale of the zero-inflation and detection probability linear
predictors and log-normal for the abundance linear predictor.

Sampling

Study area
The Trinity River is located in northwestern California and

flows 181 km from an anadromous barrier (Lewiston Dam) to its
confluence with the Klamath River. The watershed drainage area
is approximately 7700 km2, and approximately 25% of the drain-
age area lies above Lewiston Dam. The most upstream 64 km of
the mainstem (hereinafter: restoration reach) is the focus of a
river restoration program. The Trinity River Restoration Program
(TRRP; www.trrp.net) aims to restore anadromous native fish pop-
ulations whose numbers declined after dam construction and wa-
ter diversion, and legacy effects of mining and timber harvest. A
fish population dynamics model is being constructed to inform
habitat rehabilitation and water management decisions, and the
dynamics model requires estimates of habitat availability.

Sampling design
We followed model-based sampling design principles in the

generation of our survey design. An optimal regression sampling
design is most efficient at estimating true regression parameter
values when samples are allocated to the regions of the multivar-
iate space of the explanatory variables with the greatest contrast
(Kiefer 1958). To efficiently detect relationships that might be non-
linear (via quadratic regression terms) or to estimate interacting
effects among the suite of explanatory variables, samples should
also be collected across the mutually occurring combinations of
those variables. Selecting sampling locations in this manner re-
quires prior knowledge of depth, velocity, and distance to cover
throughout the sampling domain. As these values are generally
not known a priori, we relied on two-dimensional hydrodynamic
models (2DHMs). Use of 2DHMs to inform optimal sampling de-
signs has previously been demonstrated in Alexander et al. (2016).
We used nine 2DHMs that were spatially distributed along the
64 km restoration reach. Each 2DHM predicts water depth and
velocity over 400 m sections of the river, with computational cells
varying between 0.25 and 0.56 m2. More details about the con-
struction and validation of these models can be found in Alvarez
et al. (2015).

Ahead of each sampling visit to each river location’s corre-
sponding 2DHM boundaries (hereinafter: site), we extracted 2DHM
output associated with current river discharges and plotted the
bivariate relationship between spatially indexed predicted depths
and velocities. All observations were binned according to relative
combinations of depth and velocity (Fig. 1). The majority of sam-
ples were selected from bins in or near the four most extreme
corners (Fig. 1), with roughly seven samples per bin. At some sites
at certain flow levels, few or no samples existed for some corner
bins (e.g., the deepest and swiftest bins), or conditions were not
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safe for sampling. Roughly three samples were selected from the
remaining bins. We selected the sampling locations from each bin
systematically with a simple spatial stratification procedure. First,
all locations falling within each bin were sorted according to their
riverine distance from Lewiston Dam. Second, the sorted list of
locations was bracketed into as many groups as there were sam-
ples to be drawn. A randomly selected location was drawn from
the most upstream bracket, and subsequent samples were se-
lected systematically from the remaining brackets. This method
ensured that samples were well distributed along the entire
length of each site. To additionally design our data collection to
capture variation associated with cover, the entire process was
replicated separately for locations within 1 m of cover and loca-
tions considered further from cover (>1 m). This procedure re-
sulted in sample sizes of 60–75 sampling locations at each site for
each time that crews sampled a site.

The sample sizes at each site required a 2-week window for data
to be collected at all nine sites. The 2-week windows represent
time blocks, of which nearly eight full blocks were able to be
completed between February and April 2013. Several sites were
not surveyed in some blocks due to rare cases of storm-based
dangerous flow conditions or excessively turbid water. For model
fitting and parameter estimation, the time blocks were distilled to
four time periods by combining adjacent blocks because of simi-
larities in site-level observed fish counts as the survey season pro-
gressed.

Data collection
Data collection at each site, in each time block, occurred in two

phases to avoid disturbance of juvenile fish that could bias sur-
veys. In the first phase, crews snorkeled upstream using global
positioning system (GPS) equipment to locate an individual sam-
pling location. If hydraulic conditions did not match those speci-
fied at the target location, crews sampled the nearest location
within 30 m of the original point matching the desired depth,
velocity, and distance to cover. Once located, crews visually sur-
veyed the area immediately around the point to delineate a zone
of relatively homogeneous depth and velocity conditions (herein-
after: polygons). To maintain homogeneity, depth and velocity
values were restricted to lie within 0.15 m and 0.15 m·s–1, respec-

tively, of the target values. Polygons were limited to a maximum
of 2 m on the shortest dimension to ensure visibility and proper
species identification by the surveyors. Polygon corners were
marked with painted rocks whose GPS coordinates were recorded.
The depth and velocity were measured at the center of each poly-
gon and recorded, and distance to cover was measured at each
polygon’s edge. This process led to polygons that ranged from 0.3
to 42.5 m2, with a median value of 3.8 m2.

The second phase of the sampling consisted of fish counting
surveys that occurred at least 24 h after polygon delineation.
Surveys were always conducted between 1100 and 1600 by two
simultaneous divers. Using snorkel equipment, the pair would
approach the polygon moving upstream and simultaneously
count only fish within the polygon boundary. Fish counts were
also separated by species and size class, with fry being defined as
fish up to 50 mm in length and presmolts being defined as fish
larger than 50 mm. These size class thresholds were chosen to be
consistent with other TRRP monitoring programs. Though the
two counts were obtained simultaneously, to maintain indepen-
dence of the counts the snorkelers did not communicate with
each other regarding spotting or counting of fish, and each count
was provided to a data recorder beyond earshot of the other diver.
Snorkeling pairs remained together for all surveys conducted
within a single day, and pairs often remained together through-
out the survey season. Each snorkeler’s name was recorded with
each of their counts for use as a fixed effects covariate. For the
analysis herein, we focus only on counts of Chinook salmon
(Oncorhynchus tshawytscha) fry.

Model reduction and fitting
In all, nearly 1800 paired counts were collected. We anticipated

long run times for model fitting due to the large sample size and
complexity of our model. We therefore proceeded with two phases
of model building, akin to Miller et al. (2011). First, we used maxi-
mum likelihood techniques to evaluate the weight of evidence for
including potential covariates. Second, inference proceeded from a
Bayesian implementation of the model with selected covariates.

Covariate exploration
To more rapidly evaluate the merits of quadratic and interactive

terms among the depth, velocity, and distance to cover covariates,
we began by fitting a more constrained version of the model
described above. To fit the model using maximum likelihood,
both time and space were considered fixed effects, and a global
overdisperion parameter was estimated. We commenced with es-
timation using functions suitably modified from the R package
“unmarked” (Fiske and Chandler 2011). Acknowledging the poten-
tial for overdispersion, we began by estimating the parameters of
a “full model” (Table 1) and estimated ĉ via a deviance-based boot-
strap procedure deriving ĉ as the ratio of the observed full model
deviance to the mean deviance among simulated model fits.
Given ĉ, covariate evaluation proceeded in three stages.

The stages unfolded under the premise that the observed counts
are conditioned on the detection process and then further on the
zero-inflation component of the abundance process. Hence, the first
stage consisted of holding parameters in the linear predictors for 

and � fixed at their respective full model forms, and the quasi-
Akaike information criterion (QAIC; Burnham and Anderson
2002, p. 70) was applied to evaluate a priori sets of reduced param-
eters for the p linear predictor. In the second stage, the full model
elements of 
 were again held fixed, the set of p linear predictor
elements arising from the first stage were applied, and a priori
reductions in the elements of the � linear predictor were evalu-
ated via QAIC. Finally, the third stage consisted of evaluating
a priori reductions in the elements of the 
 linear predictor con-
ditional on the p and � linear predictors arising from the first two
stages. The resulting set of covariates we define as the “inference”
model and consisted of reductions in the linear predictors of p

Fig. 1. Bivariate plot of spatially indexed depth and velocity values
predicted by a two-dimensional hydrodynamics model at one site
and discharge. Vertical and horizontal lines form bins from which
spatially stratified individual sample locations were selected.
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(removed water visibility term) and � (removal of all interaction
terms), but no reductions in the linear predictor for 
 (Table 1).

Parameter estimation and inference
The model complexity (inclusion of random effects in multiple

linear predictors of our model) and the hierarchical structure
induced by the latent and observation components of our model
are well-suited for a Bayesian modeling framework. Using the now
common expression of Berliner (1996), we can express the poste-
rior distribution relative to the joint factorization of the data
model (count generating process), process model (abundance gen-
erating process), and parameter model (priors; Cressie and Wikle
2011). Letting �� denote the set of parameters associated with the
abundance linear predictors, �p denote the set of parameters as-
sociated with the detection probability linear predictor, and � =
{��, �p}, we write the joint posterior of the data, the latent vari-
ables, and the parameters as

(5) [�, N|C] � [C|N, �][N|��][�]

where the proportionality is up to a normalizing constant, and C
and N are as defined previously. We constructed the likelihood
and specified prior distributions using BUGS language, and called
JAGS (Plummer 2014) from R via the package “jagsUI” (Kellner
2014) to use Markov chain Monte Carlo (MCMC) simulation to
draw samples from the joint posterior distribution of the parame-
ters. Prior to drawing posterior samples, all continuous covariates
were centered and scaled for numeric stability. For all regression
coefficients, we specified mean-zero Gaussian priors with preci-
sion (variance–1) values equaling 0.00001. For the variance compo-
nents (each �. in eq. 4), we specified uniform (a, b) priors (Gelman
2006), with a = 0 and b = 10.

We ran three simultaneous MCMC chains and retained 3000 samples
per chain after a burn-in period of 50 000 samples and a thinning
rate of 250 (i.e., 9000 samples per parameter were summarized for
inference). Convergence was assessed visually from the traceplots
of each MCMC chain and quantitatively using the Rhat statistic
(Gelman et al. 2014). Goodness of fit was assessed using a Bayesian
p value with a �2 discrepancy measure (Kéry and Schaub 2012,
p. 402).

Population model application
As noted above, a goal of this work was to create a function for

generating HSI-type values aimed for inclusion in a population
dynamics model. By incorporating the abundance component of
our model, we can directly relate a probabilistic measure to inten-
sity of use and avoid many concerns with habitat indices based on
univariate preference curves (Railsback 2016). Further, by incorporat-
ing the posterior variation for each parameter, the generated HSI-
type values reflect the parameter uncertainty of our model. A natural
HSI-type measure in our context is � = 1 – probability (abundance = 0)
(Royle et al. 2005). Referencing eq. 3:

(6)
�i � 1 � [Ni � 0]

� 1 � (1 � �i) � �i exp(��i)

Table 1. Covariates used for each parameter in the “full” model and
retained in the “inference” model during the first phase of model
evaluation.

Parameter Covariates

Full model

 Tcat, Scat, D, V, D2C, D2, V2, D2C2, D × V, D × D2C,

V × D2C, Tcat × Scat

� Tcat, D, V, D2C, Tcat × D, Tcat × V, Tcat × D2C
p Ocat, Vis, D, Tcat

Inference model

 Tcat, Scat, D, V, D2C, D2, V2, D2C2, D × V, D × D2C,

V × D2C, Tcat × Scat

� Tcat, D, V, D2C
p Ocat, D, Tcat

Note: “Parameter” references which parameter’s linear predictor in eq. 4 the
listed “Covariates” contribute to. The subscript “cat” denotes covariates that
were included as categorical variables, with all other variables included as con-
tinuous covariates. Covariates are as follows: T = time period, S = site-level spatial
location, O = individual snorkelers, Vis = measured distance of visibility, D =
water depth, V = water mean-column velocity, and D2C = the distance to
nearest cover. A superscript of 2 denotes a quadratic term, and a “×” symbol
denotes an interaction term. A log(Area) offset was also included in the linear
predictor for 
.

Table 2. Summaries of parameter posterior densi-
ties, separated into the zero-inflation parameter
linear predictor, the Poisson mean linear predic-
tor, and the binomial detection probability linear
predictor.

Parameter Mean LCL UCL

Zero-inflation (�)
Intercept 1.14 –1.30 3.69
Velocity –0.88 –1.08 –0.67
Depth –0.73 –0.91 –0.56
D2C –0.52 –0.68 –0.36
�
 2.33 0.96 6.18
�� 0.48 0.22 0.96

Abundance (�)
Intercept –1.86 –2.60 –1.19
Velocity –0.68 –0.85 –0.52
Depth 0.01 –0.14 0.16
D2C –0.68 –0.91 –0.44
Depth2 0.05 –0.02 0.13
Velocity2 –0.01 –0.12 0.11
D2C2 0.14 0.06 0.23
Depth × Velocity 0.20 0.04 0.37
Velocity × D2C 0.06 –0.10 0.23
Depth × D2C –0.12 –0.31 0.08
�� 1.38 1.30 1.48
�
 0.67 0.25 1.76
�� 0.43 0.23 0.81

Detection (�)
Diver1 1.20 0.81 1.60
Diver2 0.75 0.29 1.21
Diver3 1.17 0.85 1.49
Diver4 1.22 0.82 1.61
Diver5 1.07 0.67 1.47
Diver6 1.04 0.70 1.37
Diver7 1.01 0.65 1.37
Diver8 0.46 0.02 0.92
Diver9 1.10 0.68 1.51
Diver10 1.14 0.65 1.63
Diver11 1.23 0.87 1.57
Diver12 0.29 –0.12 0.71
Depth –0.26 –0.38 –0.13
�� 1.22 1.09 1.37
�� 0.12 0.01 0.46
�� 0.08 0.00 0.26

Note: Point estimates (Mean) represent posterior distri-
bution means, and the lower (LCL) and upper limits (UCL)
of 95% credible intervals were created using the 0.025 and
0.975 quantiles of posterior distribution values. “D2C” = the
distance to cover covariate. A superscript of 2 represents a
quadratic coefficient, and a “×” symbol indicates a coeffi-
cient for the interaction of covariates. All reported values
are on the scale of their respective link function.

1052 Can. J. Fish. Aquat. Sci. Vol. 75, 2018

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
Si

m
on

 F
ra

se
r 

U
ni

ve
rs

ity
 o

n 
09

/1
9/

18
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



Results
The Rhat values for each parameter were ��1.1, suggesting

that all three MCMC chains converged to the same posterior space
in all cases. Visually, the traceplots showed no indication that
further burn-in, thinning, or additional posterior samples were
necessary to proceed with inference. The Bayesian p value for
these data and model was 0.16 and did not provide compelling
evidence of lack of fit.

Based on posterior distribution estimates, we found evidence
that detection probability varied with depth and among divers
(Table 2: Detection). Detection probability estimates ranged from
0.57 to 0.77 (means of individual diver posterior distributions), at
average water depths (Fig. 2). The 95% credible interval for the
depth coefficient contained only negative values and suggested
that detection probability declined with increasing depths (Table 2:
Detection).

Posterior distribution estimates suggested that both the pres-
ence and abundance of fry were associated with the measured
physical variables at the sampling locations. The probability of a
site containing fry decreased with increasing water depth, veloc-
ity, and distance to cover (Table 2: Zero-Inflation). Given fry were
present at a site, the posterior distributions suggested that abun-
dance decreased with increasing distance from cover (Table 2:
Abundance). Whereas there was evidence that increasing veloci-
ties lead to decreased abundances, the negative interaction term
between velocity and depth revealed that the magnitude of velocity’s
effect on abundance declined with increasing depth (Table 2: Abun-
dance and Fig. 3). In general, there was much less posterior evi-
dence that other interactions and the quadratic terms were
associated with variation in local abundances (Table 2: Abun-
dance).

The posterior distributions for the standard deviations repre-
senting overdispersion for the Poisson mean (given abundance)
and binomial detection linear predictors have no probability mass
near zero, and suggest their inclusion captured extra Poisson and
binomial variation, respectively (Table 2: Abundance, Detection).
The posterior distributions for both the spatial and temporal ran-
dom effects parameters reveal that detection probability showed
little evidence of variation across either space or time, but that
both the zero-inflation and Poisson mean abundance components

showed greater variation over time than across space (Table 2). As
expected, given the few number of temporal levels (4), the poste-
rior distributions for the temporal random effects parameters are
more diffuse than those for space (Table 2; Fig. 4).

Given these results, the most highly suitable locations for Chi-
nook salmon fry are those with mutually low values of the phys-
ical variables (i.e., shallower and slower water close to cover). In
addition to statistical evidence for the relative strength of param-
eters, the utility of applying the model for population dynamics
purposes could be assessed in its ability to predict discerning
� values (i.e., not predict � values near 0.5 in all places). Our model
and � generated according to eq. 6 do distinguish among habitat
quality predictions according to varying levels of depth, velocity,
and distance to cover (Fig. 5).

Discussion
Our analytical framework extends current approaches for

estimating resource selection in riverine microhabitats by switch-
ing the focus of the response variable from presence–absence to
abundance–fish density. The consequence is that the fundamen-
tal driver of microhabitat occupancy arises not from presence or
absence per se, but from how fish density varies with key habitat
variables. Thus, in our framework, occupancy arises intuitively as
the probability that fish density is greater than zero, given the
habitat covariates (eq. 6; Royle and Dorazio 2008).

Fish density is a more relevant response variable reflecting
the outcome of population processes, which is often the focus
of management actions. For example, historical uses of HSI
were geared towards estimating the amount of useable habitat
area in a presence–absence context (Railsback 2016), whereas con-
temporary applications are geared towards translating habitat
area into more ecologically relevant metrics of abundance, such
as habitat capacity (i.e., the maximum abundance that a given
habitat area can support; Bartz et al. 2006; Ayllón et al. 2012b;
Beechie et al. 2015). These approaches estimate capacity by com-
bining estimates of habitat area with an estimate of maximum
density. Our analytical framework retains favorable elements of
HSI, but also extends inference to factors affecting fish density in
microhabitats, which ultimately influences the capacity of streams
to support juvenile salmonid populations.

Fig. 2. Posterior densities of the highest (dashed line) and lowest
(solid line) estimated probably of detection among survey divers,
calculated at mean water depth and averaged over temporal and
spatial effects. Posterior densities were created by applying the
inverse-logit transformation to linear predictors representing the
linear combination of logit-scale posterior distributions.
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Fig. 3. Posterior densities of the estimated effects of velocity on
abundance at average distances to cover, for both a relatively
shallow location (0.7 m; solid line) and a relatively deep location
(3.5 m; dashed line).
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Our model structure is also explicitly designed to fully quantify
variation in fish density over that explained by habitat covariates.
This aspect of our approach is critically important because it is
well recognized that variation in habitat use arises from the inter-
play of a suite of abiotic and biotic factors, other than microhabi-
tat variables, such as water temperature, food availability, growth
potential, competition, and predation risk (Wall et al. 2016; Hayes
et al. 2016; Rosenfeld et al. 2016). In our study, we expected to
observe variation in local densities unrelated to habitat because
(i) spawner densities varied spatially over the study area, and
(ii) the study was conducted over the course of the juvenile resi-
dence period when fry initially emerge from spawning gravels,
rear in nearshore habitats, grow, and then disperse downstream
as they move towards the ocean. Variation in density owing to
these population dynamics was captured, albeit at a course reso-
lution, by inclusion of space and time random effects. However,
even after accounting for these effects, our analysis measured
non-negligible overdispersion in fish density, providing evidence
that habitat covariates alone were insufficient to fully explain
observed variation in fish density. Although our goal was to relate
fish density to microhabitat variables, our modeling framework is
amenable to inclusion of other covariates (e.g., invertebrate drift)
that may help to explain variation in fish density that is otherwise
relegated to unexplained variance as quantified by the overdisper-
sion term.

We originally intended to model the co-dependency between
the temporal and spatial effects in our model and data, but under

simulations with similar levels of time and space effects (four
levels for time, nine levels for space), we found the estimation
power of their correlation too weak to alter prior distributions. A
more refined and continuous treatment of the spatial and tempo-
ral random effects could lead to more precise parameter inference
(Cressie and Wikle 2011) and potentially reduce or remove either
of the overdispersion components of our model (Faraway 2006).
On the temporal side, the coarse and small number of time periods
was not nearly enough to consider continuous time-series models.
Our spatial units (sites) were also relatively coarse, though we could
have considered continuous spatial (i.e., geostatistical) models that
modeled correlation as a continuous function of distance among
samples within each site, albeit using a dimension reduction tech-
nique given large number of samples. Our sampling design did
spatially stratify samples along the length of each site, and the
point counts occurred in relatively small and discrete habitat ar-
eas. Given the distribution of samples within each of the sites, the
site-level spatial random effects included, and the overdispersion
parameters included at multiple portions of our model, we feel
that conditional on the habitat covariate values, residual spatial
autocorrelation is unlikely to drastically effect our posterior esti-
mates. However, a continuous spatial model could be explored in
the future, particularly in light of the estimated overdispersion.
Indeed, this highlights a benefit of the model structure we have
presented here, in that users have tremendous flexibility regard-
ing components of the multiple linear predictors.

Fig. 4. Posterior density plots for the temporal (dashed line) and spatial (solid line) random effects in the (a) zero-inflation, (b) abundance, and
(c) detection linear predictors of our model, each estimated from 9000 MCMC draws. The legend symbols in each plot correspond to their
definitions in eq. 4 and summaries in Table 2.
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We acknowledge that the large amount of data presented in
our example application is not attainable by all practitioners. The
N-mixture model does require replicated samples, but this might
be more accessible than capture–recapture methods because identi-
fication of individuals is not required, and replication is not re-
quired at all sampling locations (i.e., detection information can be
borrowed across sites; Kéry and Schaub 2012, p. 385). It is also
important to acknowledge that the N-mixture model is not solely
responsible for the large amount of data collected for this study.
First, the temporal and spatial breadth of our sampling would be
required of any study aimed to capture the full suite of variation
in local abundances attributed to time and space, even if methods
to account for imperfect detection were not employed. This need
will vary tremendously according to target species’ life-history
characteristics. Second, the data size was also influenced by our
sampling design, which sought to capture the full breadth of co-
variate values. As this was the first Chinook salmon microhabitat
study to our knowledge that accounted for detectability and spa-
tiotemporal effects, we deemed it prudent to extensively sample
the range of possible covariate values. Finally, we considered the
need to model complex (e.g., interaction and quadratic terms)
covariate relationships, which often result in relatively large data
sets (Guillera-Arroita 2017). As traditional HSI approaches assume
noninteractive covariate relationships, they naturally require rel-
atively smaller samples sizes. The impacts to inference of reduced
sampling according to any of the elements listed above could
certainly be evaluated by the rich data set that was collected for
this study.

Although not required for N-mixture models, our optimized
sampling method relied on an extensive amount of auxiliary in-
formation, and we recognize that 2DHMs will not be available in
all cases. Hydraulic models are likely to be available where flow–
habitat relationships are desired, because 2DHMs are often applied
to simulate hydraulic conditions across discharges in studied river
sections (Rosenfeld et al. 2016). For other application settings,
there are many other ways to tailor sampling designs to meet
desired outcomes, and differing inference goals will lead to differ-

ences in optimal riverine sampling (Som et al. 2014). To optimize
sampling around variables of potential habitat importance, one
could utilize other information that might be more readily avail-
able than 2DHMs, like aerial photographs (Fitzgerald et al. 2006).
Additionally, one could design sampling around differing habitat
unit types (Pusey et al. 1998) or avoid reliance on preexisting hab-
itat maps with systematic sampling (Hankin and Reeves 1988).
There are many resources available to help fisheries scientists
create efficient survey designs aligned with their inference goals,
and these could be combined with recent research related to sam-
pling for N-mixture models (Kowalewski et al. 2015) to inform
future studies.

Traditional HSI approaches, like habitat suitability curves, are
still the most commonly applied methods for habitat simulations
in instream flow studies (Rosenfeld et al. 2016). This is likely due to
their historical legacy and “ready-to-use” availability (Conallin
et al. 2010). Despite widespread use, traditional HSI methods have
received substantial critique. Railsback (2016) has recently sum-
marized many of these complaints, which include selection of
inappropriate spatial scales, assumptions of independence and
equal effects among habitat variables, output indices without
clear ecological meaning, and a general avoidance of modern
modeling techniques. Another common complaint is the lack of
measured uncertainty in habitat model outputs (Ayllón et al.
2012a; Zajac et al. 2015; Turner et al. 2016). Further, despite the fact
that fisheries researchers have accounted for detectability as or
more frequently than those studying other taxa (Kellner and
Swihart 2014), this attention has not carried into HSI-type meth-
ods. Our approach and application of an N-mixture model have
addressed all of these concerns. We opted to measure habitat
variables and fish use at a microhabitat scale relevant to juvenile
salmonids and to include variables (e.g., distance to cover) rele-
vant to juvenile salmonid behavior. Our candidate N-mixture
models included interactive terms among covariates, posed no re-
strictions on the weighting of importance for individuals effects, and
naturally produced an output with clear ecological interpretation
(probability of presence weighted directly by intensity of abun-
dance). Finally, our estimation procedure resulted in posterior
distribution samples that easily allow propagation of parameter
uncertainties into habitat model outputs. These improvements
were all conducted within a framework that explicitly accounted
for imperfect detection. We believe these qualities make a com-
pelling case for riverine habitat modeling via N-mixture models.
As these models are relatively new in fisheries applications, we
have focused on model details and an example of sampling de-
sign, analysis, and interpretation of the results. Akin to Rodtka
et al. (2015), we will allow future work to directly compare the
performance of output provided by our analysis with prior meth-
ods like HSI.

Estimating abundance in microhabitats while accounting for
imperfect detection is fundamentally challenging because standard
approaches that require geographic closure (e.g., multiple-pass re-
moval sampling: Rosenberger and Dunham 2005; mark–recapture
methods: Hillman et al. 1992; Thurow et al. 2006) cannot be applied
in this setting. Our estimates of detection probability were rela-
tively high (57% to 77% at average depths; Fig. 2) compared with
detection probability estimates reported in other calibrated snor-
kel surveys. This is likely due to differences in the spatial scale of
habitat units that we sampled (median area of 3.8 m2), as detect-
ability within microhabitats is generally not comparable to other
studies that estimate detectability over mesohabitat size areas.
For instance, Hillman et al. (1992) estimated snorkeling detection
probabilities of 20%–50% in survey reaches that were 50–200 m in
stream length, and Thurow et al. (2006) estimated snorkeling ef-
ficiencies of 12.5%–33.2% in reaches averaging 100 m in length.
Some of the variation in these reported efficiencies can also be
attributed to salmonid species diel behavior and other recorded
attributes such as fish size and water temperature. Although ju-

Fig. 5. Posterior density plots for � = 1 – p(abundance = 0) for relatively
low (10th percentile; dashed line) and high (90th percentile; solid line)
values of water depth (D) and velocity (V) and distance to cover (D2C).
The linear predictors include 1 standard deviation of each (spatial,
temporal) random effects parameter for both the zero-inflation and
abundance linear predictors. The density lines are smoothed over
9000 MCMC draws.
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venile Chinook salmon have been documented to be nocturnal
and remain concealed in substrate during daytime (Bradford and
Higgins 2001), our pilot surveys revealed little difference in fish
counts between day and night samples in this system (Pinnix et al.
2016). It should also be noted that passive fish observation tech-
niques will never detect fish that are completely hidden from the
field of view over the duration of observation (no matter how
many replicate surveys are conducted). Thus, given the availabil-
ity to be observed, we attribute high detection probability to our
focus on small microhabitat patches in which surveyors could
focus on enumerating every potentially observable fish.

In some very recent work, Barker et al. (2017) detail concerns in
N-mixture models. The authors highlight the critical loss of infor-
mation when estimating detection without marked individuals
and state that parameter identifiability in N-mixture models is
afforded owing to the hierarchical structure of the model and
strong assumptions on binomial detection, and requires high data
quality. They note that under small values of detection probability,
the variance-to-mean relationship for the detection component of
the model can mimic that of a Poisson distribution (unrelated to the
assumed distribution for abundances in the model), and this depar-
ture from the binomial assumption can lead to parameter identifi-
ability problems, which can also arise when a data set does not
account for variation in detection (i.e., their so-called “constant p”
assumption). They also suggest a lack of methods for assessing
specific assumptions in N-mixture models. While this may be the
case in the maximum likelihood framework of their presentation,
we opted for a Bayesian methodology, which granted us great
flexibility to account for detection variation above that specified
by the covariates and maintained a strict hierarchical model struc-
ture, and we applied a goodness-of-fit measure sensitive to distri-
butional assumption deviations for both the abundance and
detection components of the model. We have also noted the loss
of detection information when individuals are not marked, and
we accounted for this loss in the generation of our sampling de-
sign (and large sample size). Further, our results suggested esti-
mates of detection probability much larger than those considered
by Barker et al. (2017). Given these aspects of our design (and
resulting high data quality), model, and results, coupled with ex-
tensive simulations of our model prior to applications with our
data, and a rich literature of simulations for estimation in N-mixture
models, we do not expect that concerns raised by Barker et al. (2017)
have affected our results. The analysis by Barker et al. (2017) high-
lights the conditions under which inference from N-mixture models
may be less reliable than in our study. Indeed, practitioners should
recognize that much information is lost without marked individu-
als, and this information loss must be offset with thoughtful study
design, simulation testing, and high levels for replication of repeated
count data.

Our results suggest a less independent effect of water depth
than has been previously reported in habitat selection calcula-
tions for Chinook salmon and other salmonid fry (Beakes et al.
2014; Gard 2014; Hardy et al. 2006; Hayes and Jowett 1994). The
interaction estimates suggested that depth’s role mitigated the
effects of increasing velocity on reduced abundance, and this
makes sense given that velocity is measured at 60% height from
the riverbed to the water surface. As depths increase, the velocity
at 60% water column height could potentially be much faster than
near-bed velocities more suitable for drift-feeding fish (Railsback
and Harvey 2011). Further, our parameter estimates suggested that
depth impacted detection probability, and this highlights the po-
tential for spurious inference when not modeling detection in
scenarios where variables impact both abundance and detection,
as suggested by Kéry and Royle (2010).

Although our sampling design and model could be fit in either
a maximum likelihood or Bayesian framework, we found a num-
ber of advantages to the Bayesian framework. Although spatial
and temporal blocks can be incorporated as fixed effects in a

maximum likelihood framework for N-mixture models, fixed ef-
fects cannot be generalized to estimate expected variation in local
abundance. In contrast, expressing spatial and temporal blocks as
random effects allows for propagation of uncertainty in abun-
dance owing to demographic processes driving spatiotemporal
variation in abundance. In addition, the Bayesian framework al-
lowed us to assess which process (i.e., abundance and (or) detection)
generated overdispersion in the count data, as opposed to an omni-
bus estimate of overdispersion (e.g., ĉ; Burnham and Anderson 2002)
applied to N-mixture models under a maximum likelihood frame-
work (Mazerolle 2016). Finally,wewereabletoevaluatethestrengthof
spatial and temporal random effects on abundance relative to de-
tection. In our case, there was evidence that spatiotemporal vari-
ation was much larger for abundance than detection. This result is
intuitive for a species that emerged and migrated over the course
of our sampling period, and this relative relationship in variation
has been observed in other organisms (Isaac et al. 2011; Dénes et al.
2015).

We were able to demonstrate the utility of a N-mixture model
for assessing habitat selection of riverine juvenile salmonids. In
addition to accounting for detectability, the model structure and
Bayesian implementation proved quite flexible in incorporating
structural and residual variance components. Further, we were
able to formulate parameter estimates into a natural HSI conge-
ner that has the added benefit of interpretation as a probabilistic
statement, as opposed to a simple index. N-mixture models show
great promise for future applications to riverine habitat selection
and components of population dynamics models.
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