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ABSTRACT

Previous methods for constructing univariate habitat suitability criteria (HSC) curves have ranged from professional judgement to kernel-
smoothed density functions or combinations thereof. We present a new method of generating HSC curves that applies probability density
functions as the mathematical representation of the curves. Compared with previous approaches, benefits of our method include (1) estima-
tion of probability density function parameters directly from raw data, (2) quantitative methods for selecting among several candidate prob-
ability density functions, and (3) concise methods for expressing estimation uncertainty in the HSC curves. We demonstrate our method with
a thorough example using data collected on the depth of water used by juvenile Chinook salmon (Oncorhynchus tschawytscha) in the Klam-
ath River of northern California and southern Oregon. All R code needed to implement our example is provided in the appendix. Published
2015. This article is a U.S. Government work and is in the public domain in the USA.
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INTRODUCTION

Coupled physical and biological models often focus on
interactions of target species with their environment for the
purposes of exploring emergent properties (Harvey and
Railsback, 2009), evaluating management scenarios
(Sandoval-Solis et al., 2013) or predicting effects of future
climate change (Holsinger et al., 2014). Key inputs to these
models are the information on the association of species
with characteristics of their habitats. By quantifying species’
habitat characteristics, these dynamic models simulate
population responses to physical habitat change. As such,
an essential component of model construction is mathemat-
ically linking the gradient in habitat quality to the model’s
spatial domain as a function of physical variables.
Many methods exist to model habitat quality as a function

of physical attributes (see review by Ahmadi-Nedushan
et al., 2006). These often result in a habitat suitability index
(HSI) that ranges between zero and one. Values closer to
one indicate desirable habitats likely to be selected by the
*Correspondence to: Nicholas A. Som, US Fish & Wildlife Service, Arcata
FWO, Arcata, CA, USA.
E-mail: nicholas_som@fws.gov
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focal species, while values closer to zero suggest poor qual-
ity habitat that may be avoided. The suite of available
methods cover presence–absence data (Beakes et al.,
2014) that represent locations where the species is both pres-
ent and absent or presence-only data (Elith et al., 2011;
Royle et al., 2012) with measurements only at locations of
species occupation. In addition to these differing response
data structures, modellers may consider a multivariate ap-
proach, where the effects of physical variables are modelled
simultaneously (Ahmadi-Nedushan et al., 2006), or a
univariate approach, where the effect of each variable is first
analyzed independently (Hayes and Jowett, 1994), and then
a suitable method (e.g. geometric or arithmetic mean (Hardy
et al., 2006a), multiplication (Gard, 2014), etc.) is used to
combine the univariate analyses into a single HSI value.
The univariate approach often leads to habitat suitability

criteria (HSC) curves, which express the relative quality of
a variable across its range. HSC values also lie between zero
and one and are interpreted similarly to HSI. For example, in
the case of riverine fish, it is not uncommon to relate fish use
with the depth and velocity of water, and the distance to
nearest cover (Persinger et al., 2011). If habitat availability
(relative amounts of the physical variable across the entire
sampling domain) information is available, then HSC curves
the public domain in the USA
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Figure 1. Example probability density functions of two normally
distributed random variables (N1 and N2, solid lines) and two
gamma random variables (G1 and G2, dashed lines). N1 has
parameter values mean =�3 and standard deviation = 0.45; N2
has parameter values mean = 0 and standard deviation = 1.5; G1
has parameter values shape = 1 and scale = 2; G2 has paramete
values shape = 2 and scale = 3. Definitions of these probability den
sity functions and their parameters can be found in Asquith (2014)
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can be generated by adjusting habitat use by the availability
of each physical variable (Jowett, 2002), via methods that
include forage ratios (Heath et al., 2015).
Univariate HSC curves have been generated using

methods ranging from professional judgement to quantita-
tive analysis (Bovee, 1986; Newcomb et al., 2007) and
among the most commonly applied and cited methods
for HSC curve creation is that of Hayes and Jowett
(1994; e.g. cited over 100 times at the time of submis-
sion). This method relies on kernel-smoothed density
distributions, which use both a kernel smoother (i.e. the
shape of smoothing window) and a smoothing parameter
(also called bandwidth) to approximate the distribution
of the observed data. The smoothing parameter is selected
to match the pattern of the observed data without masking
important components or shapes and can be aided by
variable smoothers that adapt the amount of smoothing
for long-tailed distributions (Silverman, 1986). Hence,
applying kernel smoothing requires the user to select both
a smoothing parameter and a smoothing shape (there are
many), but this method lacks quantitative methods to
evaluate the choices.
There are several applications of this method, with vary-

ing steps after the kernel-smoothed density curves are cre-
ated. For instance, the HSC curves could be adjusted for
availability, standardized to lie between zero and one and
then matched to mathematical functions via maximum
likelihood using coordinates of the kernel-density curves
(Hayes and Jowett, 1994). The mathematical functions can
be polynomials of varying orders or other non-linear func-
tions. In essence, this method first serves to approximate
the probability density function of the observed data via a
kernel-smoothed density distribution and then attempts to
describe the resulting curve via a mathematical function that
can be used to assign HSC curve values across the range of
potential values in the system of study.
We agree with Hayes and Jowett (1994) that probability

density functions (hereafter, PDFs) are an elegant represen-
tation of HSC curves. We contend, however, that given the
large array of potential PDFs (and large suite of potential
shapes) that these data are more amenable to direct PDF
fitting and estimation. Herein, we propose the direct use of
PDFs as the basis for the mathematical representation of
HSC curve shapes. In addition to eschewing decisions re-
garding kernel shape or smoothing parameter size, we show
that our proposed method has the added benefits of (1) esti-
mating parameters directly from the observed data (instead
of fitting a mathematical function to kernel-density output),
(2) providing a clear method for quantitative evaluation of
candidate PDFs, and (3) creating a framework where
expressing the uncertainty in parameter estimates and PDF
choice is easily implemented with common statistical
software.
Published 2015. This article is a U.S. Government work and is in the public dom
PROBABILITY DENSITY FUNCTIONS FIT TO HSC
CURVES

Continuous probability density functions

We begin with a very concise introduction to continuous
PDFs. Interested readers can find more details in any
mathematical statistics text, including Mukhopadhyay
(2000). In general, for any continuous random variable
X, f(x) is a probability density function if and only if

f(x)≥ 0 for all real x, and ∫
1
�1 f xð Þdx ¼ 1. These condi-

tions are assured if applying common software for fitting
distributions to data, such as R statistical software (R Core
Team, 2014). There are many continuous PDFs, and
common distributions include the normal (also called
Gaussian), gamma, chi-square, exponential, Pareto and
Weibull. For variables like depth, velocity, distance to
cover and other physical variables that might be combined
into an HSC analysis, the variables tend to be non-
negative, and other potential continuous PDFs include
the kappa, generalized extreme value, log-normal and
truncated (at zero) normal distribution.
The support (i.e. the range of all possible values that X

can take), the range of values X is most likely to take
and the shapes of PDFs are governed by the form of
f(x) and the parameters that define the function. For ex-
ample, the normal distribution has support from �1 to
1, and the gamma is only defined for x ≥ 0, but shapes
and likely ranges of X from PDFs can vary demonstrably
with differing parameter values (Figure 1). In all, this
ain in the USA River Res. Applic. 32: 1128–1137 (2016
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> #1
> set.seed(34593); data <- rexp(45, 5)
> #2
> expML <- function(pars, data)
{-sum(log(dexp(data, rate = pars[1])))}

> #3
> start <- mean(data); fitEXP <- optim(start,
expML, data=data, method="BFGS")

> fitEXP$par
[1] 5.172151

N. A. SOM ET AL.1130
leads to a rich library of potential PDFs from which one
or several are likely to fit observed data well.

PDF parameter estimation

To take advantage of the shapes of PDFs for HSC curves,
PDF parameters must be estimated from the observed data.
There are several methods for estimating PDF parameters.
Maximum likelihood (ML) estimation is likely the most fa-
miliar to readers, but L-moments estimation (based on linear
combinations of order statistics) may be preferred for some
PDFs (Hosking, 1990). Here, we present a small example
of ML estimation, which finds parameter values that are
the most likely (have the maximum likelihood) given the ob-
served data, and our expanded example in the subsequent
discussion demonstrates an application of L-moments
estimation.
Using calculus and algebra, parameters of some PDFs

may be estimated via ML analytically using summary sta-
tistics of the observed data, but there are often situations
where numerical methods must be employed. Numerical
methods are quite accessible with common statistical
software, so we present our example using R statistical
software (R Core Team, 2014), with data randomly gener-
ated from an exponential distribution. More details on ML
estimation can be found in many statistical texts, including
Mukhopadhyay (2000).
A likelihood function (L(θ)) is a function of the parame-

ters (θ) and is simply the product the PDF (f(x)) evaluated
at the n data points for θ,

L θð Þ ¼
Yn

i¼1

f xi; θð Þ

For computational convenience, the natural logarithm
(ln) of the joint distribution of the data is often used,
which results in a summation over the joint distribution.
Additionally, because the optimization routine employed
in our example (optim) defaults to finding minimums,
and for a PDF selection metric described subsequently,
we also multiply our function by �1 and obtain a func-
tion to use for computing ML estimates of the PDF pa-
rameters,

�lnL θð Þ ¼ �
Xn

i

ln f xi; θð Þð Þ (1)

In the R code below this paragraph, we (1) randomly
generate 45 exponentially distributed variables (rate pa-
rameter = 5); (2) place the PDF (dexp for the base pack-
age of R) and parameter in Equation (1); and (3)
provide a reasonable parameter starting value and have
the software numerically obtain a parameter estimate.
Published 2015. This article is a U.S. Government work and is in the public dom
The estimate of around 5.17 is not exactly equal to 5, and
that is because a random sample was drawn. If we repeated
this exercise many times, the average estimate would be
very close to 5. R statistical software contains many
packages for estimating the parameters of PDFs via ML
(e.g. maxLik, likelihood and bbmle) or L-moments (lmomco).
The values of the selected PDF across the range of the
variable values being considered are not restricted to be
between zero and one. To impose this restriction, one sim-
ply scales the curve’s values by the maximum PDF value
across the range of variable values. This approach is dem-
onstrated subsequently.
Selecting PDFs

Several PDFs will likely have potential to sufficiently fit the
shape of the data, and an important step is deciding which to
consider. A benefit of our method is the ability to quantita-
tively compare the fit of several candidate PDFs, and
selecting this candidate list begins with choosing PDFs with
support, and potential shape, that are appropriate for the
data. For instance, a normal distribution would not be appro-
priate for a variable that can only take positive values, and
choosing a single-parameter exponential distribution would
not be appropriate for data that exhibit HSC values near zero
for both the lowest and highest values of the data range. We
note that our approach will work for any PDF, including
those for bivariate distributions.
With our proposed method, the fit of each candidate PDF

to the data can be evaluated and used to rank their relative
performance. One common approach would be to compute
Akaike’s Information Criterion (AIC) and rank the PDFs
by their AIC values (Burnham and Anderson, 2004). AIC
adds a penalty for each estimated parameter and seeks to
balance the number of estimated parameters against the
quality of the fit. In our experience, we have not been wor-
ried about an unwieldy number of estimated parameters for
these PDFs (often between one and four parameters), so
we simply extract the part of AIC that does not include a
penalty for the number of parameters: � 2* ln(L(θ)). As
two is a constant scaler in this application, we can further
ain in the USA River Res. Applic. 32: 1128–1137 (2016)
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HSC VIA PROBABILITY DENSITY FUNCTIONS 1131
simplify our metric to � ln(L(θ)) (hereafter, �LL) as given
in Equation (2). Similar to applications of AIC, the PDFs
with the smallest�LL would demonstrate evidence of best
fit. �LL is easily obtained from any of the packages for
ML estimation listed earlier and also from our example with
the exponential distribution. Because we incorporated both
the negative and ln into our function, we simply call the
function that was used for estimation and insert the
estimated value.
> expML(fitEXP$par, data)
[1] -28.94799

Published 2015. This article is a U.S. Government work and is in the pub
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Computing�LL in this way could also be performed to
compare the fits of several PDFs if another estimation
method was used (e.g. L-moments), because we are simply
computing a value that considers the fit of the PDF to the
data given specific parameter values.

Expressing uncertainty in HSC curves

Another benefit of our method is the ability to express, both
statistically and graphically, the uncertainty associated with
the parameter estimates and the resulting HSC curve.
Although confidence intervals for the parameter estimates
are easily obtained, of more interest to practitioners is how
this uncertainty is propagated to the HSC curves. The
sample size and quality of fit will dictate how variant a
confidence interval envelope appears around the curve gen-
erated from the observed data.
To compute and display HSC curves with their associated

confidence interval curves, one could apply a parametric or
non-parametric bootstrap routine. We opt here to present a
non-parametric bootstrap method as it is more general, re-
quires less knowledge of the output from various software
routines and applies to a wide array of estimation tech-
niques. Non-parametric bootstrapping involves computing
statistics of interest with data generated by resampling with
replacement from the observed data (Lange, 1999, p. 300).
The process is repeated a large number of times (e.g.
2000) to obtain a bootstrapped approximation to the sam-
pling distribution of the statistics of interest. Here, the statis-
tics of interest will often be the HSC curve values across the
range of the data. For an application to HSC curves, one can
resample the data, estimate the parameters, generate values
from the PDF over the range of the target variable, and
repeat to obtain a bootstrapped distribution of HSC values
that can be plotted with the curve fit to the observed data.
An example of this is provided subsequently.
Depth (m)
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Figure 2. Histogram of measured depth values recorded with
observed juvenile Chinook salmon use in the Klamath River
EXAMPLE

Here, we provide an example of our method using data col-
lected to estimate the physical characteristics of habitat used
lic dom
by Chinook salmon (Oncorhynchus tschawytscha) fry
(juvenile fish that are several months old and less than
50mm in length) in the Klamath River of northern California
and southern Oregon, USA. These are presence-only data, and
we focus here on the depth variable, which is the measured
depths of water occupied by these fish during data collection.
These data were collected between 1998 and 2005 and contain
1663 depth values that ranged from 0.03 to 1.4m. More details
on the methods and locations of data collection, and the suite
of other physical variables collected can be found in
Hardy et al. (2006b). These data are currently being used to
construct HSC curves for use in development of flow-to-
habitat relationships for applications to a fish population dy-
namics model.
A histogram reveals a slightly right-skewed pattern, and

because negative depths are not possible, only PDFs
allowing only positive values are considered (Figure 2). Al-
though we suggest that histograms be used for initial graph-
ical assessment of the distribution of the data and for
graphical assessment of how well a chosen PDF fits, we
stress that we do not use histograms for the estimation of
parameters or actual fitting of the HSC curves. We begin
with selecting a pool of candidate PDF curves that may fit
the data well, and although certainly not exhaustive, some
examples include the Rayleigh, gamma and Rice distribu-
tions. Full mathematical descriptions of these PDFs can be
found in Asquith (2014).
To evaluate the fit of each of these distributions to our

data, we first estimate the parameters from these distribu-
tions with our data and then evaluate the�LL for each fit
(Table I). The R code used to complete this step is available
in Appendix A.1 and relies on the R contributed package
ain in the USA River Res. Applic. 32: 1128–1137 (2016
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Table I. Summaries of parameter estimates and minus the log-
likelihood (�LL) for each probability density function being
considered for a habitat suitability criteria curve for the depth
variable

Distribution Parameter estimates �LL

Gamma α= 3.7730; β = 0.0940 �637
Rayleigh ξ = 0.0144; α= 0.2714 �592
Rice ν= 0.2342; α = 0.2259 �561

N. A. SOM ET AL.1132
lmomco (Asquith, 2014). Based on these results, we would
select the gamma PDF, because it has the lowest�LL.
Our next step is to scale the values of the selected PDF to

lie between zero and one and then plot the resulting curve to
visually evaluate if our estimated curve fits the data well. The
R code for this step is provided in Appendix A.2. First, values
for the selected PDF are computed across the observed range
of depth values. Next, all PDF values are divided by their
maximum to scale all values between zero and one. These
scaled values are plotted against a representation of the raw
data (e.g. a histogram) to ensure the curve fits well and makes
sense. In our case here, the gamma distribution appears to fit
the data very well (Figure 3, solid line).
Finally, we estimate how the uncertainty in our parameter

estimates is reflected in the shape of the HSC curve. We ap-
ply a bootstrap routine that estimates the PDF parameters
with a resampled data set and computes the HSC values over
Chinook Fry
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Figure 3. Estimated habitat suitability criteria (HSC) curve (solid
line) with 95% confidence intervals (dashed lines) for the depth
of habitats used by Chinook salmon fry in the Klamath River.
The estimated HSC curve is generated by fitting the data to a
gamma distribution and then scaling the fitted PDF values by their
maximum to restrict values between zero and one. The 95% confi-
dence interval curves are generated by a non-parametric
bootstrapping routine. The histogram is provided for visual assess-
ment of fit only and was not used to fit the HSC curve to the data

Published 2015. This article is a U.S. Government work and is in the public dom
the range of the data. We applied this procedure 2000 times
and generated an estimated sampling distribution of the
HSC curve across the range of the data. Confidence intervals
are generated by taking the α/2 and 1�α/2 quantiles of the
bootstrapped values across the range of depth. We opted for
95% confidence intervals and, thus, took the 0.025 and
0.975 quantiles. The R code used to generate our confidence
intervals is provided in Appendix A.3. In this case, the con-
fidence intervals (Figure 3, dashed lines) track very closely,
and are quite narrow around, our estimated curve. In addi-
tion to the chosen PDF fitting the data well, the confidence
intervals are narrow due to the large sample size. If the sam-
ple size was much smaller, say 50, the width of the confi-
dence intervals would be much wider and the shape less
precise (e.g. Figure A.1).
DISCUSSION

We have demonstrated that PDFs can be used to construct
HSC curves that are completely data-driven and without
the subjectivity or reliance on smoothing parameters or his-
togram bin widths of other methods. The continuous PDFs
employed by our method generate smooth curves, which
we believe better reflect changes in habitat suitability com-
pared with curves that vary sharply over small gradients in
physical attributes, for example, frequency analysis or non-
parametric tolerance limits (Newcomb et al., 2007).
We are not aware of methods to adequately represent the

uncertainty associated with generating HSC curves via the
kernel-density approach, although it may be possible. One
would need to quantitatively account for the uncertainty
associated with decisions regarding type of kernel smoother
employed and the amount of smoothing applied (size of
bandwidth parameter). Further, the user defines the specific
values, over the range of the physical variable, for which
output from the kernel-smoothed density estimate is gener-
ated. This decision point precludes the use of any quantita-
tive measures regarding quality of fit, and these values are
in turn used to estimate the parameters of the mathematical
function. Effectively accounting for the uncertainty in
HSC curves generated using the kernel-density approach
would require resolution of these issues.
We have shown that our approach provides basic methods

to evaluate candidate PDFs and quantitatively select a PDF
from which to base a HSC curve. Further, our approach
provides straightforward methods for estimating the uncer-
tainty in PDF parameter estimates and the resulting effects
on the HSC curves. Faced with several candidate PDFs that
rank similarly in regards to fit quality, one could also incor-
porate the uncertainty in the PDF selection to their HSC
curves. For instance, at each bootstrap iteration, one could
bootstrap the data as well as pull from the candidate list of
ain in the USA River Res. Applic. 32: 1128–1137 (2016)
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HSC VIA PROBABILITY DENSITY FUNCTIONS 1133
PDFs and generate HSC curves with confidence intervals
reflective of both PDF and parameter uncertainty. Likewise,
one could add a step to the bootstrap routine where the
resampled data set is subjected to the PDF selection
procedure.
If the univariate HSC curve approach is applied, there still

remains the task of combining the univariate curves into a
single HSI. While we do not pursue that topic here, we do
note that our approach allows a straightforward way to
incorporate the variation in PDF parameter estimates via
common procedures like bootstrapping or Monte Carlo
sampling. For instance, once could implement a routine
where, at each bootstrap iteration, a bootstrapped HSC curve
is created for each physical variable, and the univariate
curves are combined per chosen method to create HSI
values that express the according uncertainty.
We certainly do not suggest that construction of HSC

curves can be made with a black-box type approach. Simply
because one PDF fits best among those considered does not
imply the PDF fits the data well enough for applications. In
our experience, however, we have not encountered situa-
tions where a proper candidate PDF fit poorly. In fact, for
applications that have covered multiple physical variables
for multiple species and life stages from several rivers, we
have found that gamma, kappa, Pareto and Weibull PDFs
commonly fit well for HSC data. These PDFs can provide
a large array of possible shapes given combinations of their
respective parameter values.
We acknowledge that in our example we did not make ad-

justments to adjust habitat use for availability. In the habitat
suitability work that we have encountered, we have not had
the benefit of additional availability information. This situa-
tion could be increasingly common, with the growing need
to gather information from existing databases to reduce ex-
penses (Isaak et al., 2014). Many scientists do have these
data and prefer to incorporate this information into the
HSC curves. Our method will work in either case. One could
simply repeat the process used for selecting and estimating
the parameters of a habitat-use PDF for the habitat-
availability data, and then divide the use curves by the avail-
ability curves, or make availability adjustments to the use
data and fit a PDF to data already adjusted for availability.
Generally, presence–absence data is preferred to

presence-only, because observed zeros are informative
about the suite of physical conditions that species use (Royle
et al., 2012). Despite this and advances in the data collec-
tion, model fitting, and analysis methods suitable for HSI
creation, there will remain practitioners and applications that
rely on presence-only data, by choice or by need, to con-
struct HSC curves. We contend that the science in this arena
benefits from a method that reduces subjectivity, estimates
HSC curves directly from raw data and accounts for uncer-
tainty in HSC curve creation.
Published 2015. This article is a U.S. Government work and is in the public dom
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APPEND

A.1 R code to evaluate fit of potential PDFs to depth variable

# Evaluate fit of potential PDFs to depth variabl
# ChinookFry is the name of the data object that
# Define the data we’ll be fitting a HSC curve to.
depth<- ChinookFry$Depth

# load the lmomco package
library(lmomco)

# Create a function that relies on the package "l
# 1: Estimate the parameters of a candidate PDF u
# 2: Calculate - log(likelihood) given the
# parameter estimates and candidate distribu
EstFitReport<- function(distn, dat){
X1 <- lmoms(dat)
parEst <- lmom2par(X1, type=distn)
CallLabel <- paste("pdf", distn, sep="")
nll <- (-sum(log(do.call(CallLabel, args=lis
list(pars=parEst$para, nll=nll)
}

# Rayleigh distribution
EstFitReport("ray", depth) -LL=-591.5406
# Gamma distribution
EstFitReport("gam", depth) -LL=-636.5174
# Rice distribution
EstFitReport("rice", depth) -LL=-560.517

A.2 R code to scale PDF values between 0 and 1 and plot HSC

# Scale PDF values so all HSC values lie between
# Plot estimated curve to visually inspect fit to

# Create a function that extracts the parameter
makePARA<- function(distn, ests){
para<- list()
para$type<- distn
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para<- ests
para$source<- paste("par", distn, sep="")
para
}

# Create a function that scales all HSC curve values to between 0 and 1,
# and plot the curve on a representation of the data, in this case a histogram.
plotScaledFit<- function(Range, distn, pars){
CallLabel <- paste("pdf", distn, sep="")
newPARA <- makePARA(distn, pars)
vals <- do.call(CallLabel, args=list(x=Range, para=newPARA), quote=T)
max.val <- max(vals)
scaled.vals<- vals/max.val
list(values=scaled.vals, scaler=max.val)
}

# Create a histogram, but do not plot because we want the y-axis of the
# histogram to match the scale of our HSC values.
H<-hist(depth, breaks="FD", plot=F)

# Adjust the histogram so the y-axis lies between 0 and 1.
H.nls<-H
H.nls$counts<- H$counts/max(H$counts)

# Create a dense set of numbers representing the range of depths
plotRange=seq(0, 1.5, 0.01)

# Plot histogram with axis labels
plot(H.nls, xlab="Depth", main="Chinook Fry", cex.lab=1.5, cex.main=2,
ylab="Scaled Frequency")

# Add estimated HSC curve to histogram
lines(plotRange, plotScaledFit(plotRange, "gam",

EstFitReport("gam", depth)$pars)$values, lwd=3)

A.3 R code to create and add confidence intervals to HSC curve.

# Create a function that:
# Creates bootstrap confidence intervals of the PDF parameters,
# and the HSC curve values.
BootstrapCIs<- function(data, distn, nBoots, alpha, plotRange){
FitEst<- function(distn,data){
X1<- lmoms(data)
parEst<- lmom2par(X1, type=distn)
parEst$para
}

makePARA<- function(distn, ests){
para<- list()
para$type<- distn
para$type <- ests
para $source<- paste("par", distn, sep="")
para
}
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plotScaledFitted<- function(Range, distn, pars){
CallLabel<- paste("pdf", distn, sep="")
para <- list()
para$type<- distn
para$para<- pars
para$source<- paste("par",distn,sep="")
newPARA<- para
vals<- do.call(CallLabel, args=list(x=Range, para=newPARA), quote=T)
max.val<- max(vals)
scaled.vals<- vals/max.val
scaled.vals
}

BootMat<- t(replicate(nBoots, FitEst(distn, sample(data,length(data),
replace=T)),simplify="matrix"))

# Confidence Interval for parameter values
ParamCI<- apply(BootMat, 2, quantile, probs=c(alpha/2,(1-alpha/2)))
ParamSE<- apply(BootMat, 2, sd)

# Confidence Interval for curves
BootCurves<- apply(BootMat, 1, plotScaledFitted,Range=plotRange, distn=distn)
CurveCI<- apply(BootCurves, 1, quantile, probs=c(alpha/2,(1-alpha/2)))
Curve.CI.Lower=CurveCI[1,]
Curve.CI.Upper=CurveCI[2,]
list(Parameters.CI=ParamCI, Parameters.SE=ParamSE,
Curve.CI.Lower=Curve.CI.Lower,
Curve.CI.Upper=Curve.CI.Upper)
}

# Run function to obtain confidence intervals
# Note: may take several minutes to run
ConfInts<- BootstrapCIs(data=depth, distn="gam", nBoots=2000,
alpha=0.05, plotRange=seq(0,1.5,0.01))

# Plot histogram and fitted curve again
plot(H.nls, xlab="Depth", main="Chinook Fry", cex.lab=1.5, cex.main=2,
ylab="Scaled Frequency")
lines(plotRange, plotScaledFit(plotRange, "gam",

EstFitReport("gam", depth) $pars)values, lwd=3)

# Add the upper and lower 95% confidence intervals
lines(ConfInts$Curve.CI.Lower~plotRange, lty=5, lwd=1)
lines(ConfInts$Curve.CI.Upper~plotRange, lty=5, lwd=1)
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Smaller Sample of Chinook Fry
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Figure A.1. Estimated habitat suitability criteria (HSC) curve (solid line) with 95% confidence intervals (dashed lines) for a randomly sampled
reduced data set of 50 observations of the depth of habitats used by Chinook salmon fry in the Klamath River. The estimated HSC curve is
generated by fitting the reduced data to a gamma distribution and then scaling the fitted PDF values by their maximum to restrict values be-
tween zero and one. The 95% confidence interval curves are generated by a non-parametric bootstrapping routine. This plot was generated to
show how a smaller sample size will result in wider HSC curve confidence intervals with a less precise shape, as compared with the larger

sample size revealed in the main text of the manuscript

A. 4 Example of confidence intervals for smaller sample size
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