

Fisheries Restoration and Monitoring Plan Phase 3 Kick-off Webinar

Clint Alexander, Natascia Tamburello, Marc Porter, Cedar Morton, Darcy Pickard October 22nd 2019

Meeting Objective

Introduce our overall plan for engaging with you in Phase 3, emphasizing steps, timeline and approximate level of effort

Not discussing detailed methodology during this webinar

Call for volunteers willing to participate Jan to May 2020

Agenda

Time	Topic			
~9:30a-9:35a	 Arrival, roll call. Webinar participation reminders: Mute phones when not speaking; use chat feature to contribute questions 			
9:35a-9:40a	1// Recap - Where we are in processRelease Draft IFRMP!Thank-you for peer review input			
9:40a-9:50a	2// Summary of Phase 3 deliverables, timelineWhat's not included (need for Phase 4)			
9:50a-11:00a	 3// Overview of proposed approach to restoration action prioritization Rapid surveys, sequence of sub-basin webinars 			
11:00a-11:20a	 4// Refining Core Performance Indicators How they fit into prioritization now and in future 			
11:20a-11:30a	 5// Call to form sub-basin teams Post-webinar survey Reminder on support funding [Chris / Matt] 			
11:30a	Adjourn			

Recapon Recent Events

Where Are We In the Process?

Phase 1: Synthesis Report

IFRMP web site, doc library & interviews Phase 1 Synthesis Report

Phase 2: Vision, Frameworks & Initial Draft

Define Objectives,
Indicators,
Actions, Mon +
Prioritization
Frmwks

Draft Plan Document (completed public review)

Refine CPIs (& suitability thresholds)

Iterative Prioritization (subbasin, subregional, basin-wide scales) Draft Plan
Document
(peer review)

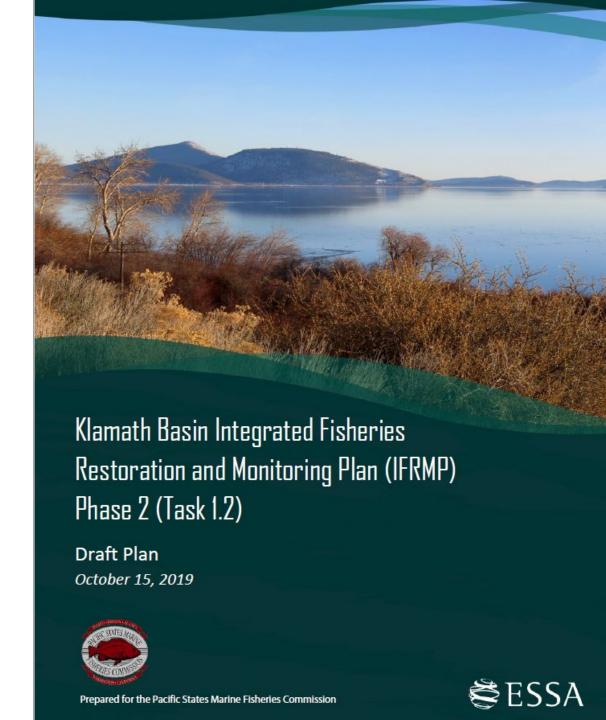
Phase 4? TBD

Detailed costs

Monitoring priorities

Adaptive mgmt.

implementation


Plan Document

Draft IFRMP document released Oct 15 2019

Obtain here:

http://kbifrm.psmfc.org/

Thank-you for Phase 2 Comments!

- 660+ comments by 23 commenters addressed
- Distribution varies across sub-basins, most in UKL (more people commenting)

~85% "easy fix", 15% more substantive to be addressed in Phase 3

0 Global Comment 1 Introduction 2 Basin-Wide Restoration & Monitoring Framework 2.1 Guiding Principles for Process-Based Restoration 2.3 Core Performance Indicators 2.4 Restoration Monitoring and Sequencing 3.1 Overarching Basin-Wide Restoration Actions 3.2 Upper Klamath Lake Sub-Region -3.2.1 Upper Klamath Lake Sub-Basin 3.2.2 Williamson Sub-Basin 3.2.3 Sprague Sub-Basin -3.2.4 Lost Sub-Basin 3.3 Mid-Upper Klamath Basin Sub-Region -3.3.1 Upper Klamath River Sub-Basin 3.3.2 Mid Klamath River Sub-Basin -3.3.3 Shasta Sub-Basin 3.3.4 Scott Sub-Basin -3.3.5 Salmon Sub-Basin 3.4 Lower Klamath River Sub-Region & Klamath Estuary -3.4.1 Lower Klamath River Sub-Basin (Klamath Estuary) 3.4.2 Trinity Sub-Basin -3.4.3 South Fork Trinity Sub-Basin -4 Methodology for Iterative Restoration Action Prioritization & Sequencing Class 4.2 Tiered Multi-Criteria Scoring Approach 1 - No Action Needed (Observation Only) 4.2.1 Roles Involved in Conducting Iterative Prioritization -4.2.2 Criterion 2.2 - Overall Restoration Comparison Cost 2 - Non-essential Optimization for Clarity 4.2.2 Klamath IFRMP Integrated Tracking Inventory & Scoring Tool-3 - Language / Grammar Correction 4.3 Breadth of Potential Benefits for Recovery (Tier 1) 4.3.1 Criterion 1.1: Weighted No. of Key Stressors Addressed-4 - Simple Factual Correction 4.3.2 Criterion 1.2: Weighted No. of Objectives Improved 5 - Substantive Structural Comment 4.3.3 Criterion 1.4: Spatial Scale of Potential Benefits & Coincidence of Restoration with Critically Designated / Priority Habitat-6 - Global Change 4.4 Cost and Social Considerations (Tier 2) 4.4.1 Criterion 2.1 - Level of Collaborative Buy-in & Stewardship Commitment 7 - Question / Perspective / Topic for discussion 4.4.2 Criterion 2.2 - Overall Restoration Comparison Cost-7 - Question / topic for discussion 5 Recommended Future Steps 6 Literature Cited and Further Reading-75 25 50 100 0

count

2 Phase 3 Overview Deliverables & Timeline

Prioritization

Perform test application, conduct sensitivity analysis, Finalize tool.

Generate prioritized list of actions.

Refine CPIs & Suitability Thresholds

Peer review CPIs & Suitability thresholds, That will be essential to guiding sequencing and phasing.

Draft IFRMP Document

Update Plan documents with results of earlier steps.

Peer Review

Engage SRWG members to review products (webinars, 1:1 technical team mtgs, peer review findings workshop).

Phase 3 (2019-2020)

- Increased engagement with smaller expertisebased teams to tackle discrete tasks, e.g.,:
 - Core performance indicators (CPIs) & suitability thresholds to gauge phase progression
 - Iteratively test & revise prioritization framework and tool

Phase 3: Timeline & Major Deliverables

Major Milestone / Deliverable	When
Official Phase 3 kick-off webinar. Solicit needed info to add missing actions. Make call to participate in sub-basin prioritization teams, provide overview of Phase 3	Oct 22
Clarify/add missing restoration actions to sub-basins	Oct – Dec 2019
Refine CPIs & determine suitability thresholds. Attempt initial (qualitative) characterization current CPI status in different sub-basins or regions.	Oct 2019 – Feb 2020
Build simple (web) user interface for Integrated Tracking Inventory & Scoring Tool to support collaborative multi-scale prioritization	Oct 2019 – Jan 2020
Engage with <u>sub-basin</u> groups (plan and deliver iterative webinars supported by surveys). Iteratively apply ITI Scoring Tool	Late Jan – Apr 2020
Perform the ranking exercise at <u>sub-regional spatial scale</u>	Apr – May 2020
Perform the ranking exercise at <u>basin-wide spatial scale</u>	May 2020

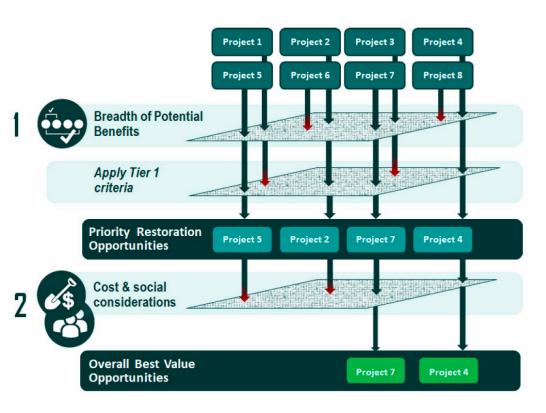
Phase 3: Timeline & Major Deliverables

Major Milestone / Deliverable	When	
Draft/update chapters, produce first draft of the main Plan document	Mar - Jun 2020	
Following internal review with Federal Coordination Group, publish draft Plan to Klamath website , conduct peer review of draft Plan , collect, organize and summarize comments	Jul - mid Sep 2020	
Address priority comments, produce complete draft of main Plan document	Sep - Oct 2020	
Deliver final Phase 3 presentation webinar	Oct-Nov 2020	

Deferred to Phase 4

- Detailed restoration action costs
- The restructured Phase 3 Plan will <u>not</u> include any substantive advancements on monitoring aspects of the Plan, including monitoring cost estimates
- We will strive in Phase 3 to reconcile with Oregon Fisheries Reintroduction Plan, Upper Klamath Watershed Action Plan, Klamath River Renewal Corporation dam removal process decisions by FERC, etc., but not in detail (until Phase 4).
- Provision of adaptive management readiness products (e.g., mock annual adaptive management reporting template)
- Establishing Adaptive Governance structures to empower and enable Plan implementation, as appropriate, and consistent with parallel efforts such as the Coalition of the Willing process, Sovereign's Forum process, etc.
- Additional meetings, workshops, outreach efforts beyond budget
- Any wholesale restructuring of the Plan document

Any surprises in the Phase 3 work scope?



Overview Phase 3: Approach to Prioritization

Prioritization Criteria from Phase 2

Tier 1 – Breadth of potential benefits (scores)

- 1. Objectives addressed
- 2. Biophysical tier targeted
- 3. Focal species coverage
- Spatial coverage (scale & priority habitat)

Tier 2 – Cost & social considerations

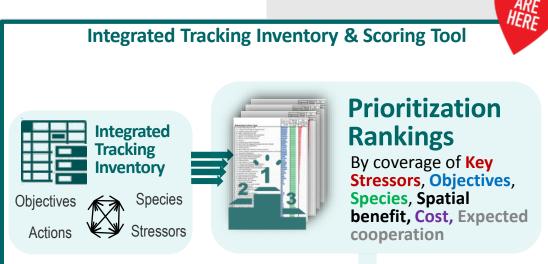
- Multi-level collaboration & support (score)
- 2. Comparison cost (*meta data only)

Participatory approach to restoration action prioritization

Whole basin

What we've accomplished together so far...

Document Review


Conceptual Models

Online Surveys

Webinars

Implementation

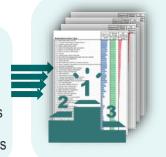
Whole basin

Document Review

Conceptual Models

Online Surveys

Webinars


Integrated Tracking Inventory & Scoring Tool

Integrated Tracking Inventory

Species Stressors

Prioritization Rankings

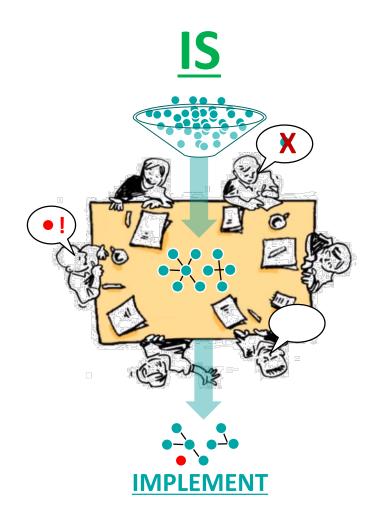
By coverage of **Key Stressors**, **Objectives**, **Species**, Spatial benefit, Cost, Expected cooperation

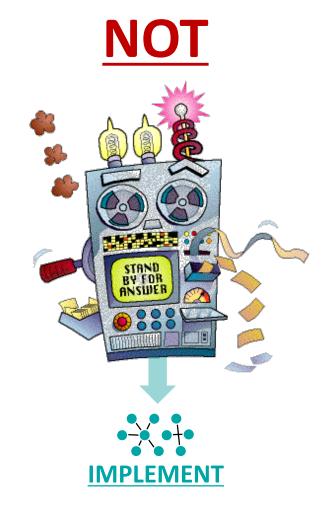
Sub-basin

Sub-region

Implementation

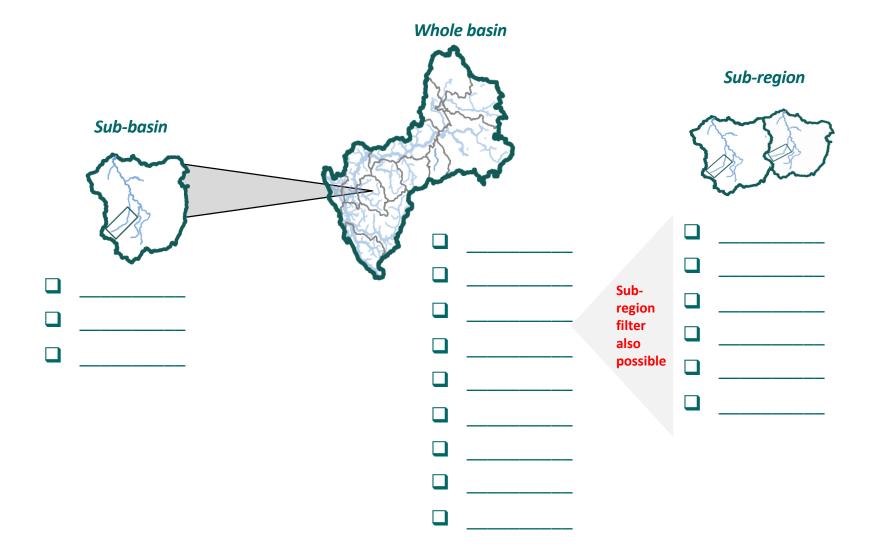
Whole basin




Integrated Tracking Inventory & Scoring Tool

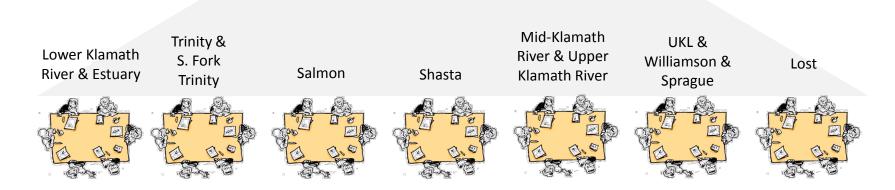
							USED				
	Subbasin	No.		Restoration Action Type (PCSRF Data Dictionary)	Criterion 1.1: Weighted Stressors Addressed	Criterion 1.2: Weighted Objectives Improved	Criterion {1.1 : 1.2}/2	+ Criterion 1.3: Multi-Species Benefit Score	Criterion 1.4: Weighted Spatial Scale of Potential Benefit	Cooperation & Stewardship	TOTAL Score
v	▼			<u>v</u>	·	<u> </u>	·	<u> </u>	▼	Commitment 🔻	
	Mid Klamath River		Remove upstream Klamath mainstem dams: Iron Gate, Copco 1 and 2, and JC Boyle to restore natura		36	56	46	22	20	12.5	100.5
	Upper Klamath River		Remove upstream Klamath mainstem dams: Iron Gate, Copco 1 and 2, and JC Boyle to allow access t		36	56	46	22	15	12.5	95.5
	Mid Klamath River		Adaptively manage releases from Klamath mainstem dams (while they remain in place, as per 2019		34	48	41	22	20	12.5	95.5
	Upper Klamath Lake		Implement improvements in summertime stream flows through increased water use efficiency, trans		36	44	40	24	15	12.5	91.5
	Upper Klamath Lake		Improve habitat quantity and quality of shoreline springs in Upper Klamath Lake for lake-spawning		33	52	42.5	24	10	12.5	89
	Upper Klamath Lake		Pursue restoration of additional lake fringe wetlands through wetland reserve easements, land acqu		33	44	38.5	22	15	12.5	88
	Sprague		Improve instream flows through increased water use efficiency, particularly through installation of	•	36	36	36	24	15	12.5	87.5
	Upper Klamath Lake		Minimize irrigation return flow via conversion of flood or furrow irrigation into drip, sprinkler, or g		36	36	36	24	15	12.5	87.5
9	Williamson		Protect, reconnect, and restore cold-water springs guided by existing groundwater studies and/or FL	C.4.c Channel reconfiguration and connectivity	36	32	34	24	15	12.5	85.5
10) Sprague		Improve in-stream habitat by adding large wood and spawning gravels and supporting pool develop	C.4.f Spawning gravel placement; C.4.d Channel structure placement; C.4.c C	36	32	34	24	15	12.5	85.5
11	Upper Klamath Lake		B Strategic restoration to stage 0 through hydrologic reconnection, remeandering, and beaver manage	C.4.c Channel reconfiguration and connectivity; C.4.h Beavers & beaver dam	36	44	40	18	15	12.5	85.5
12	Upper Klamath River		Adaptively manage releases from Klamath mainstem dams (while they remain in place, as per 2019	C.3.h.1 Manage Dam Releases (Klamath Dams)	34	48	41	22	10	12.5	85.5
13	Williamson		l Implement improvements in summertime stream flows through increased water use efficiency, trans	C.3.e Irrigation practice improvement; C.3.f Water leased or purchased	24	44	34	24	15	12.5	85.5
14	Williamson		USDA Forest Service will work with permittees to adjust grazing strategies for pastures and allotmen	C.5.g Conservation grazing management	36	36	36	21	15	12.5	84.5
15	Shasta		Identify and implement projects to reduce warm tailwater inputs into streams, with priority implem	C.7.n Tailwater return reuse or filtering; C.3.e Irrigation practice improveme	32	36	34	22	15	12.5	83.5
16	Sprague		B Work with willing landowners to restore riparian plant communities through installation and main	C.5.c Riparian planting; C.5.d Fencing; C.6.j Upland livestock management	28	36	32	24	15	12.5	83.5
17	Williamson		Work with willing landowners to restore riparian plant communities by fencing and/or planting of r	C.5.c Riparian planting; C.5.d Fencing; C.6.j Upland livestock management	36	36	36	24	10	12.5	82.5
18	Williamson		Strategic restoration to stage 0 through beaver management and or installation of check dams or be	C.4.h Beavers & beaver dam analogs	36	40	38	16	15	12.5	81.5
19	Upper Klamath River		Improve irrigation practices to increase instream flows in tributaries.	C.3.e Irrigation practice improvement	30	36	33	21	15	12.5	81.5
20) Shasta		Increase instream flows and improve flow timing by assessing and relocating or redesigning the div	C.3.e Irrigation practice improvement	30	36	33	21	15	12.5	81.5
2:	Scott		Assess irrigation system water use efficiency and implement water use efficiency improvements thro	C.3.e Irrigation practice improvement	30	36	33	21	15	12.5	81.5
22	Upper Klamath Lake		l Manage grazing strategies using rotation or variable timing on private lands in the Wood River whi	C.5.g Conservation grazing management	23	36	29.5	24	15	12.5	81
23	Lost		Reconfigure the arrangement of Willow Creek with the forebay of Clear Lake to overcome limited acc	C.4.c Channel reconfiguration and connectivity	36	32	34	24	10	12.5	80.5
24	Upper Klamath Lake		Reconnect springs and ensure access to spring-fed refuge habitat during periods of poor water qual	C.4.c Channel reconfiguration and connectivity	36	32	34	24	10	12.5	80.5
25	Lost		Improve in-stream, wetland, and riparian habitat in around the mouth of Willow Creek where it mee	C.8.e Wetland improvement/ restoration; C.4.d Channel structure placement	46	52	49	6	10	12.5	77.5
26	Shasta		Consider restoring upstream fish passage at Dwinnell Dam to open up large areas of suitable coho,	C.4.c Channel reconfiguration and connectivity	28	32	30	20	15	12.5	77.5
27	Shasta		Identify and implement restoration projects that restore floodplains through improving or creating	C.4.c Channel reconfiguration and connectivity	28	32	30	20	15	12.5	77.5
28	Scott		Assess feasibility, develop a plan, and remove, setback, or reconfigure levees and dikes to restore cl	C.4.c Channel reconfiguration and connectivity	28	32	30	20	15	12.5	77.5
29	Scott		Identify high-priority sites for enhancing refugia habitats and construct off channel-ponds, alcoves,	C.4.c Channel reconfiguration and connectivity	28	32	30	20	15	12.5	77.5
30	Salmon		Properties of the Properties o	·	28	32	30	20	15	12.5	77.5

Prioritization Tool Provides Ranked List of Actions for Further Deliberations...



Goal...

Recommended Projects



Suggested Process & Sub-basin Teams...

Test survey & webinar design

Pilot Sub-basin Team

All Remaining Sub-basin Teams (x8)

Do these sub-basin groupings make sense? Any advice on choice of pilot sub-basin?

PART 1: All Participants (Basin-wide)

Webinar 1 – The Prioritization Tool Introduction to the prioritization tool & prioritization contexts/scenarios

Web Survey 1 - CPIs

Preferences about candidate CPI thresholds

Webinar 2 – CPI determination & thresholds

Review survey results & determine site/sub-basin scale CPIs & sub-basin specific suitability thresholds

Activities...

PART 2: Individual Sub-basin Teams (x8 + pilot team)

Webinar 3 – Restoration Actions Povious spatial scale criteria for existing

Review spatial scale criteria for existing projects Add and refine any missing actions

Web Survey 2 – Restoration Needs

Preferences about prioritization of <u>restoration needs</u>

Webinar 4 - Prioritization #1

Review of survey results, validation & refinement of prioritization tool outputs

PART 3: All Participants (Basin-wide)

Web Survey 3 – Evaluation Criteria

Preferences about importance of evaluation criteria

Webinar 5 – Prioritization #2

Final peer review comments, validation & refinement of results

Activity	Purpose	Duration	Timing	
Webinar 1 – The Prioritization Tool	Introduction to the prioritization tool & prioritization contexts/scenarios	2hr	late January	
Web Survey 1 - CPIs	Preferences about candidate CPI thresholds	~1hr	early February	
Webinar 2 – CPI determination & thresholds	Review survey results & determine site/sub-basin scale CPIs & sub-basin specific suitability thresholds	2hr	mid February	
Webinar 3 – Restoration Actions	Add and refine any missing actions; define spatial scale criteria rankings for each candidate project (criterion #4 in Tier 1)	2hr	late February (Pilot) March (x8)	
Web Survey 2 – Restoration Needs	Preferences about prioritization of restoration needs	~1hr	early March (Pilot) March-April (x8)	
Webinar 4 – Prioritization #1	Review of survey results, validation & refinement of prioritization tool outputs	2hr	late March (Pilot) April (x8)	
Web Survey 3 – Evaluation Criteria	Preferences about importance of evaluation criteria	~1hr	April	
Webinar 5 – Prioritization #2	Final peer review comments, validation & refinement of results	2hr	May	
	= Sub-basin teams (x9)			

Timeline for Engagement

	Webinar 1	Web Survey 1	Webinar 2	Webinar 3	Web Survey 2	Webinar 4	Web Survey 3	Webinar 5
Jan								
Feb								
				Pilot				
Mar				x7	Pilot			
					x7	Pilot		
Apr						x7		
May								

Basin-wide (All)

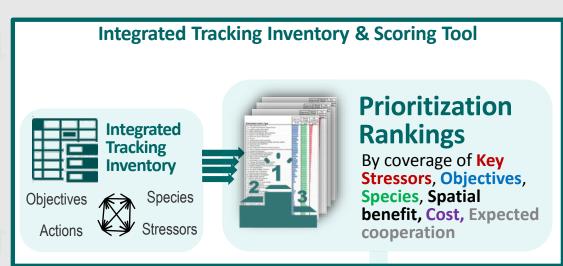
Pilot Sub-Basin

Sub-basins (concurrent x7)

Timeline for Engagement

	Webinar 1	Web Survey 1	Webinar 2 Webinar 3 Web Webinar 4 Effort per person between	Web Survey 3	Webinar 5
Jan			January-May		
Feb			Ev 2hr wahinara		
1 00			5x 2hr webinars 3x 1hr surveys		
Mar			7 hrs review materials		
Apr			TOTAL: ~20 hours/participant		
Apr					
May					

Basin-wide (All)


Pilot Sub-Basin

Sub-basins (concurrent x7)

Webinar 1. Introduction to the prioritization tool & prioritization contexts

Whole basin

Sub-basin

Implementation

Monitoring

Webinar 1. Introduction to the prioritization tool & prioritization contexts

Example...

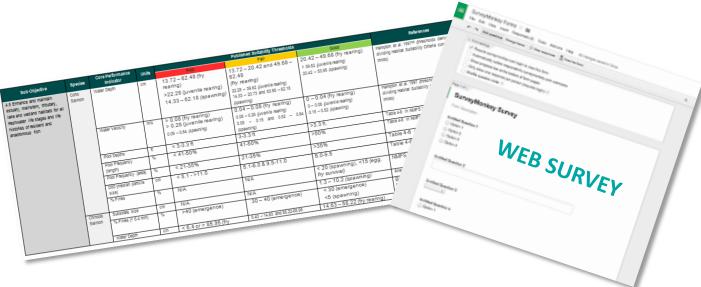
Scenario 1*

- Dams in (current hydrosystem)
- Current climate or future climate? (TBD)

Scenario 2

- Dams out
- Current climate or future climate? (TBD)

*Note: Survey responses required for each scenario



Web Survey 1. CPIs and Thresholds

Sub-basin teams Individually



- Pre-reading of potential CPI thresholds identified by literature review in Phase 1
 - Web survey to elicit preferences on thresholds for SITE to SUBBASIN scales CPIs thresholds for specific sub-basins (from table or new)

Webinar 2. CPI & Thresholds Determination

- Review results of CPI & threshold web survey
- Discuss and reach general agreement on best thresholds to use for different sub-basins and contexts
- Discuss suitability of roll-ups proposed for whole-basin scale

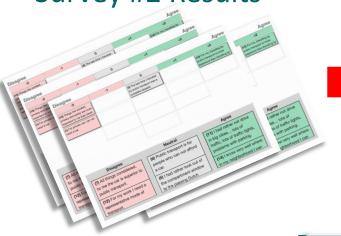
Webinar 3. Add and Refine Missing Actions

Easy web-based user interface to incorporate participant feedback (ESSA facilitates, performs configuration w tool)

Sub-basin teams Individually

Web Survey 2. Preferences about importance of different <u>restoration needs</u>

YOUR FEEDBACK

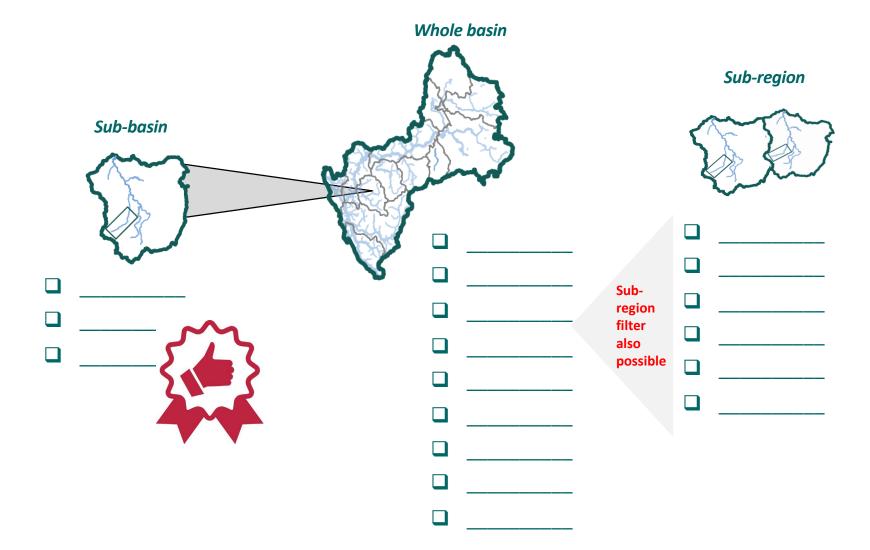

to be increased

- Quick; easy
- Statistically robust
- Repeatable
- Forces trade-offs
- Identifies 'consensus' priorities

ESSA Application of Survey 2 Results to Prioritization Tool

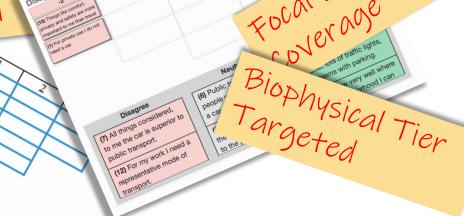
Prioritization Tool

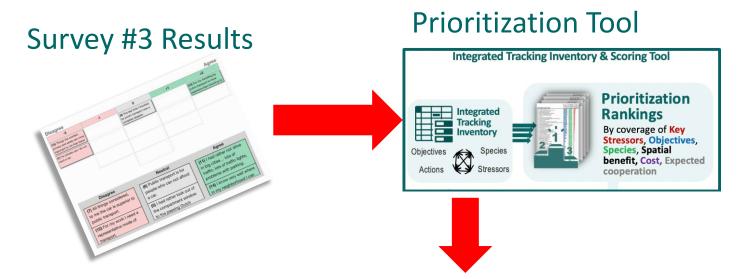
Recommended Projects
(Preliminary)

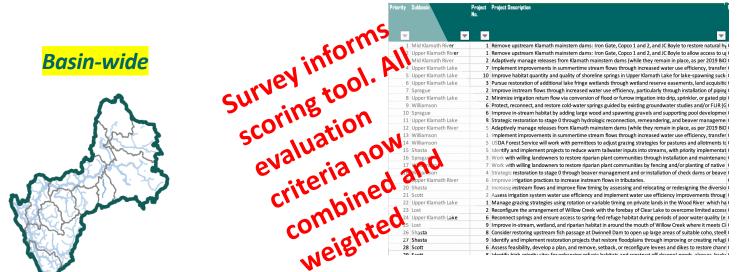

Sub-basin level

	Priority Subbasin	Project Proj No.	ect Description		(Premin
		Projec No.	t Project Description		
		Priority Subbasin	Project Project Des No.	cription	1
survey informs	1 Mid Klan 2 Upper Kl	V	Priority Subbasin	Project No.	Project Description 'I
CIN .C	3 Mid I a	1 Mid Klamath		▼ ▼	▼
-M3	Opper	2 Upper Klama	di Mari		_
- VIII	Supper N	3 Mid Klamath			Remove upstream Klamath mainstem dams: Iron Gate, Copco 1 and 2, and JC Boyle to restore natural hy
informs criteric	7 Carrent	4 Upper Klama			Remove upstream Klamath mainstem dams: Iron Gate, Copco 1 and 2, and JC Boyle to allow access to up
	8 Upper Kl	5 Upper Klama			Adaptively manage releases from Klamath mainstem dams (while they remain in place, as per 2019 BiO
	9 Williams	6 Upper Klarna			Implement improvements in summertime stream flows through increased water use efficiency, transfer
1. ~1/6	9 Williams	/ Sprague	5 Upper Klamath L		Improve habitat quantity and quality of shoreline springs in Upper Klamath Lake for lake-spawning suck
criterio	22 Sprague	8 Upper Klama			Pursue restoration of additional lake fringe wetlands through wetland reserve easements, land acquisition
	, pper Ki	9 Williamson	7 Sprague		Improve instream flows through increased water use efficiency, particularly through installation of piping
	12 Upper Ki	10 Sprague	8 Upper Klamath L		Minimize irrigation return flow via conversion of flood or furrow irrigation into drip, sprinkler, or gated pip
O. M	13 Williams	11 Upper Klama			Protect, reconnect, and restore cold-water springs guided by existing groundwater studies and/or FLIR (G
	14 William	12 Upper Klama			Improve in-stream habitat by adding large wood and spawning gravels and supporting pool developmen
		13 Williamson	11 Upper Klamath L	ake 8	Strategic restoration to stage 0 through hydrologic reconnection, remeandering, and beaver manageme
	o theat	14 Williamson	12 Upper Klamath F	iver 5	Adaptively manage releases from Klamath mainstem dams (while they remain in place, as per 2019 BiO
	A Williams	15 Shasta	13 Williamson	1	Implement improvements in summertime stream flows through increased water use efficiency, transfer
	18 Williams	Sprague	14 Williamson		USDA Forest Service will work with permittees to adjust grazing strategies for pastures and allotments to
341	19 Uper	1. Williamson	15 Shasta		Identify and implement projects to reduce warm tailwater inputs into streams, with priority implementat
	20 Cha va	18 Williamson	16 Sprague		Work with willing landowners to restore riparian plant communities through installation and maintenanc
come with	Oth	19 Upper Klama	th Rive 17 Williamson	1	Work with willing landowners to restore riparian plant communities by fencing and/or planting of native
	2 Upper Kl	20 Shasta	18 Williamson	4	Strategic restoration to stage 0 through beaver management and or installation of check dams or beave
-4	23 Lost	21 Scott	19 Upper Klamath F	iver 6	Improve irrigation practices to increase instream flows in tributaries.
_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	24 Upper Kl	22 Upper Klama	th Lak 20 Shasta		Increase instream flows and improve flow timing by assessing and relocating or redesigning the diversio
OV	25 05	23 Lost	21 Scott		Assess irrigation system water use efficiency and implement water use efficiency improvements through
	_410	24 Upper Klama	th Lak 22 Upper Klamath L	ake 1	Manage grazing strategies using rotation or variable timing on private lands in the Wood River which ha
	2 Shasta	25 Lost	23 Lost		Reconfigure the arrangement of Willow Creek with the forebay of Clear Lake to overcome limited access
_	28 Scott	26 Shasta	24 Upper Klamath L	ake 6	Reconnect springs and ensure access to spring-fed refuge habitat during periods of poor water quality (e
<u>~</u> `	70 Contt	27 Shasta	25 Lost		Improve in-stream, wetland, and riparian habitat in around the mouth of Willow Creek where it meets Cl
	•	28 Scott	26 Shasta		Consider restoring upstream fish passage at Dwinnell Dam to open up large areas of suitable coho, steell
_		20 Contt	27 Shasta		Identify and implement restoration projects that restore floodplains through improving or creating refugi
			28 Scott		Assess feasibility, develop a plan, and remove, setback, or reconfigure levees and dikes to restore chann
			20 Scott		Identify high priority cites for enhancing refugis bahitate and construct off channel needs alcover backs

Web Survey 3. Preferences about importance of evaluation criteria

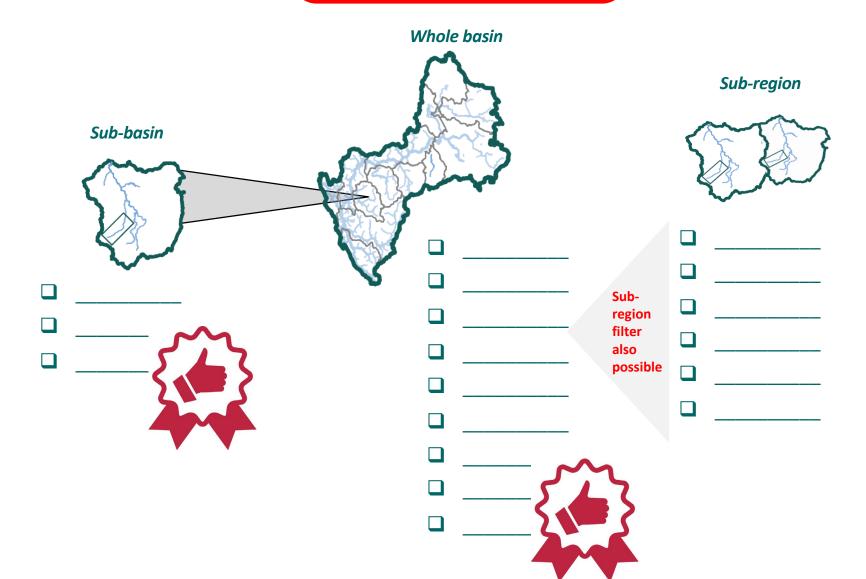

All sub-basin teams simultaneously





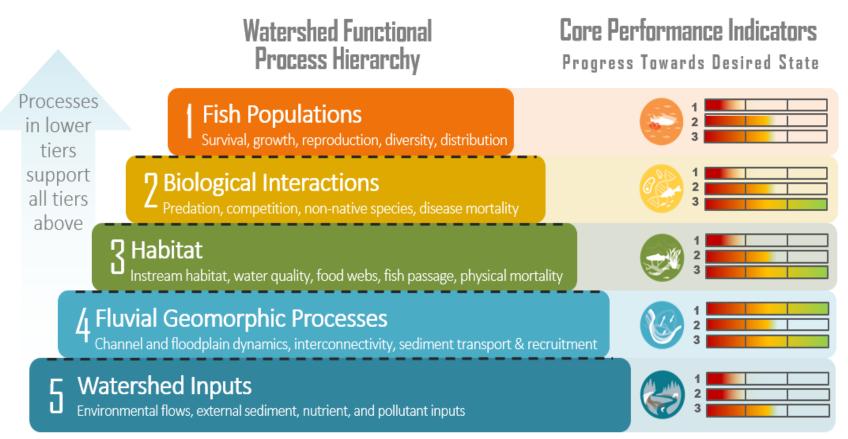
- **Biophysical tier targeted**
- Objectives addressed
- Biophysical tier targeted
- Focal species coverage
- Spatial coverage (scale & critical habitat)
- 5. Multi-level collaboration & support

ESSA Application of Survey 3 Results to Prioritization Tool



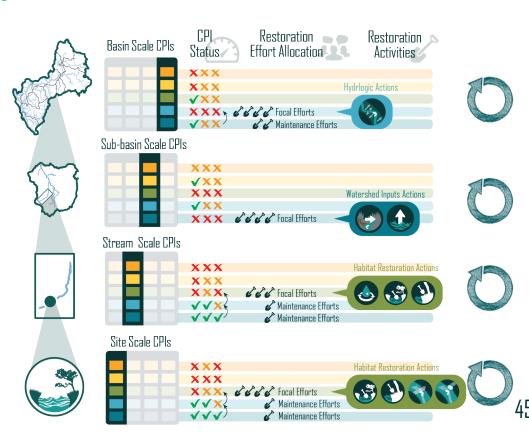
Recommended Projects (Final)

Given the goal of prioritizing basin-wide restoration actions, does the sequence and number of proposed surveys and webinars seem reasonable to you?


4

Core Performance Indicators – How They Fit In

Process-Based Restoration


- Bottom-up restoration by tier of watershed functional processes instead of population benchmarks (e.g., Elwha)
- <u>Default principle</u>: Actions benefitting lower tiers favored as they will generate broader benefits to multiple species

Restoration & Monitoring Phasing, Sequencing

- Scale specific CPIs and thresholds are the basis for future monitoring of project effectiveness and system status and trends.
- They can also inform phasing restoration actions over time and space through effects on prioritization.
- <u>Default</u> principle (but up for debate!):
 - CPIs far from "good" status will be <u>upweighted</u> for higher priority, lead to more intensive focal restoration.
 - CPIs closer to "good"
 status will be downweighted
 for lower priority, efforts will
 shift towards "maintenance"
 activities.

Core Performance Indicators (CPIs)

floodplain morphologies

Watershed Inputs (WI)

Improve water quality,

quantity, and ecological

flow regimes

Ratio fine to coarse particulate

organic matter (FPOM: CPOM)

· Implementation rate of agricultural,

Total stream miles with desirable flow

and sediment conditions [6.1, 6.2, 6.3]

ranching, and logging best

management practices [6.3]

Road density

Sub-basins with desirable mean

Total stream miles with desirable

62.631

6.2, 6.3

flow and sediment conditions [6.1,

flow and sediment conditions [6.1,

L	9 7				
	Goal	Site / Reach	Tributary / Lake	Sup-Basin*	Whole Basin
	ish Populations (by species) 1. Achieve naturally self- sustaining native fish populations.	 Presence / absence [1.3, 1.5] Presence of spawning [1.2, 1.3] Abundance [1.3] Growth Survival 	Juveniles per adult [1.1] Abundance [1.3]	No f historical natural occupied [1.5] Age structure and demographics [1.2] Genetic diversity [1.4]: Integrity, Redundancy, Life History Diversity Estimated population size [1.3]	# sub-basins acmeving their population targets (for occupancy, abundance, extinction risk, etc.) for species that have sub-basin specific targets [1.3, 1.5] Total # of fish populations [1.3, 1.5]
0	Biological Interactions (BI) 3. Reduce biotic interactions that could have negative effects on native fish pops.	Non-native species presence, abundance [3.2] Host polychaete M. speciosa and C.shasta densities Non-native species presence, abundance [3.2]	Prevalence of infection [3.1] Prevalence of mortality [3.1]	 Total stream miles with high prevalence of infection, mortality [3.1] Total stream miles with high levels of impact by non-native species [3.2] 	 # sub-basins with concerning levels of disease. # sub-basins with concerning levels of non-native species.
	Habitat (H) 4. Improve freshwater habitat access and suitability for fish and the quality and quantity of habitat used by all freshwater life stages	Core Water Quality Metrics in suitable ranges (by species) [4.2] Temperature, Dissolved Oxygen, pH, Total Phosphorous, Total Nitrogen, Nuisance Phytoplankton (density, chlorophyll-a, cyanotoxins)	Stream Condition Index [4.3] (via SWAMP monitoring program) Habitat Suitability Rating [4.5] By species based on: Water depth and velocity, pool frequency (depth and area), Dsc (median particle size), % fines, salinity (estuary), lake level (suckers)	% historical habitat accessible [4.1] % of moderate/ high intrinsic Potential (IP) habitat occupied [4.1] Estimated number of fishes entrained (by species) [4.4] Cumulative size and number of thermal / WQ refugia habitat [4.2, 4.5]	# sub-basins with desirable habitat suitability (by species) [57 5 2, 5.3]
	Fluvial Geomorphic Processes (FG) 5. Create and maintain spatially connected and diverse channel and	Bed mobility at selected reaches [5.1] Large wood recruitment [5.3]	Geomorphic flushing flows (extent and duration) [5.1] Area of connected floodplain Index of channel complexity Geomorphic flushing area disturbed.	 Area and duration of inundation at identified key flow thresholds [5.2] (including floodplain, wetlands, off- channel habitat) Total area recently logged 	 # sub-basins with desirable morphology [5.1, 5.2, 5.3] Total stream miles with desirable morphology [5.1, 5.2, 5.3]

% of riparian area disturbed

natural flows [6.1]

NEW since early Phase 2

Several comments on these received in Phase 2, but not yet addressed. Documented to seed work on refining CPIs in Phase 3.

. # diversions / area OR # cfs dedicated to

stream (temporary v. permanent) [6.1]

· Monthly flows as % of modelled historical

Annual loads sand or larger grain sizes

(magnitude and variability) [5.2]

Core Performance Indicators (CPIs)

Site / Reach

Tributary / Lake

Juveniles per adult [1.1]

Abundance [1.3]

% of historical nabilal occupied [1.5]

Genetic diversity [1.4]: Integrity,

Estimated population size [1.3]

Age structure and demographics [1.2]

Redundancy, Life History Diversity

Fish Populations (by species) 1. Achieve naturally self- sustaining native fish populations.	Presence / absence [1.3, 1.5] Presence of spawning [1.2, 1.3] Abundance [1.3] Growth Survival
Biological Interactions (BI) 3. Reduce biotic interactions that could have negative effects on native fish pops.	Non-nativabund Host p C.sha. Re
Habitat (H) 4. Improve freshwater habitat access and suitability for fish and the quality and quantity of habitat used by all freshwater life stages	• Core \\ suitab Tempe pH, To Nitrogi (densi cyano) • Sn
Fluvial Geomorphic Processes (FG) 5. Create and maintain spatially connected and diverse channel and floodplain morphologies	Bed m [5.1] Large Dri (1)

Watershed Inputs (WI)

Improve water quality,

quantity, and ecological

Ratio

organi

[6.2]

 Refining CPIs to be done via survey and discussion in a whole-basin group setting

Smaller commitment than prioritization subgroups
 (1 survey, 2 webinars)

 Monthly flows as % of modelled historical natural flows [6.1]

 Annual loads sand or larger grain sizes (magnitude and variability) [5.2] management practices [6.3]

 Total stream miles with desirable flow and sediment conditions [6.1, 6.2, 6.3]

Road density

Whole Basin

 # sub-basins acrieving their population targets (for occupancy, abundance, extinction risk, etc.) for species that have sub-basin specific targets [1.3, 1.5]

Total # of fish populations [1.3, 1.5]

pasins with concerning levels

asins with concerning levels ative species.

sins with desirable habitat (by species) [5.15.2,

isins with desirable ogy [5.1, 5.2, 5.3]

eam miles with desirable ogy [5.1, 5.2, 5.3]

asins with desirable mean d sediment conditions [6.1,

 Total stream miles with desirable flow and sediment conditions [6.1, 6.2, 6.3] since early Phase 2

NEW

Several comments on these received in Phase 2, but not yet addressed.

Documented to seed work on <u>refining CPIs in Phase 3</u>.

What Makes a Good Indicator?

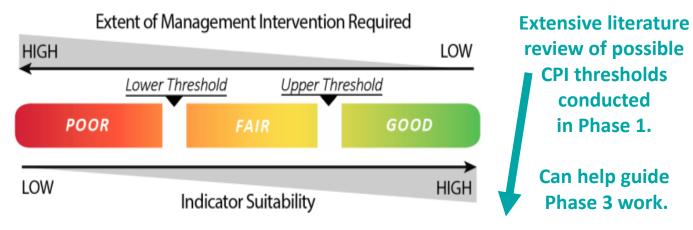
All things we will need to consider and discuss

WHEN, HOW LONG

REQUIRED FREQUENCY

WHERE, RESOLUTION

SUITABLE LIMITS



SUPPORTING EVIDENCE

Suitability Thresholds

 For each indicator, suitability thresholds or targets must be identified to help guide prioritization of restoration needs and progression through functional watershed tiers

Sub-Objective	Species	Core Performance Indicator	Unita		References		
Sub-Objective				Poor	Fair	Good	References
.5 Enhance and maintain istuary, mainstem, tributary, ake and wetland habitats for all reshwater life stages and life istories of resident and nadromous fish	Coho Salmon	Water Depth	cm	13.72 – 62.48 (fry rearing) >22.25 (juvenile rearing) 14.33 – 62.18 (spawning)	13.72 – 20.42 and 49.68 – 62.48 (fry rearing) 22.25 – 39.62 (juvenile rearing) 14.33 – 20.73 and 53.95 – 62.18 (spawning)	20.42 – 49.68 (fry rearing) > 39.62 (juvenile rearing) 20.42 – 53.95 (spawning)	Hampton et al. 1997 ⁴³ (thresholds derived by dividing Habitat Suitability Criteria curves into thirds)
		Water Velocity	m/s	> 0.08 (fry rearing) > 0.26 (juvenile rearing) 0.09 – 0.64 (spawning)	0.04 - 0.08 (fry rearing) 0.08 - 0.26 (juvenile rearing) 0.09 - 0.15 and 0.52 - 0.64 (spawning)	11 27	Hampton et al. 1997 (thresholds derived by dividing Habitat Suitability Criteria curves into thirds)
		Pool Depths	ft	< 3-3.3 ft	3-3.3 ft	>3.3 ft.	Table 4-6 in NMFS 2014 49 (for coho)
		Pool Frequency (length)	%	< 41-50%	41-50%	>50%	Table 4-6 in NMF5 2014 (for coho)
		Pool Frequency (area)	%	< 21-35%	21-35%	>35%	Table 4-6 in NMFS 2014 (for coho)
		D50 (median particle size)	cm	< 5.1 - >11.0	5.1-6.0 & 9.5-11.0	6.0-9.5	Table 4-6 in NMFS 2014 (for coho)
		% Fines	%	N/A	N/A	< 20 (spawning), <15 (egg, fry survival)	NMFS 2001 ⁵⁰
	Chinook	Substrate size	cm	N/A	N/A	1.3 – 10.2 (spawning)	Allen and Hassier 1986 ⁵¹
	Salmon	% Fines (< 6.4 mm)	%	>40 (emergence)	30 – 40 (emergence)	< 30 (emergence) <5 (spawning)	Bjomn and Reiser 1991, cited in NMFS 2001

Is it clear how CPIs will be used to support iterative prioritization and future monitoring both now and in the future?

5

Call to Form CPI & Sub-Basin Teams!

Klamath Sub-basin Teams

1. Please provide:	
Name	
Affiliation	
email	
primary business phone number	
2. Which subbasin te	ams would you like to join? Check all that apply.
Upper Klamath Lak	re
Williamson & Sprag	(ue
Lost	
Shasta	
Salmon	
Scott	
☐ Mid-Klamath RIver	& Upper Klamath River
Lower Klamath Riv	er
☐ Trinity & SF Trinity	

3. What are your areas of expertise? Please check all that apply
Watershed inputs (e.g. landscape disturbance, climate, nutrient dynamics, environmental flows, etc.)
Fluvial geomorphology (e.g. channel and flooplain dynamics, sediment transport & recruitment, etc.)
Fish habitat (e.g. instream habitat, water quality, fish passage, etc.)
Biological interactions (e.g. predation, competition, disease, invasive species, etc.)
Fish populations (e.g. distribution, diversity, growth, survival, etc.)
4. What are your preferred subject areas for participation? Check all that apply. Core performance indicators (CPIs) & associated suitability thresholds Restoration action prioritization
5. Please provide any additional comments

Before we close, any final comments on other things we should take into consideration when engaging with you during Phase 3?

Chris Wheaton (cwheaton@psmfc.org) – lead PSMFC
Clint Alexander (calexander@essa.com) – lead ESSA
Laurelle Santana (Isantana@essa.com) – communication coordinator, mailing lists, etc.

Further Information

Visit the IFRMP website at: http://kbifrm.psmfc.org/