Handouts

Klamath Basin Collaborative Monitoring Plan Workshop May 14 -15, 2025 Ashland Springs Hotel, Ashland Oregon

2.1 Guiding Principles for Process-Based Restoration

Figure 2-1. Diagram illustrating the concept of bottom-up restoration by tier of watershed processes, where practitioners should focus first on addressing the underlying causes at the base of the hierarchy before carrying out restoration in other tiers that rely on this foundation (after Roni and Beechie 2013, Harman et al. e2012). The stylistic heat-map colored bars underneath "Core Performance Indicators" represent different metrics that have been selected to measure the status of conditions within the different biophysical tiers and are used to track progress towards achieving the desired state.

Klamath IFRMP Goals and Objectives Hierarchy

Watershed Inputs (WI) 6. Improve water quality, quantity, and ecological flow regimes	Fluvial Geomorphic Processes (FG) 5. Create and maintain spatially connected and diverse channel and floodplain morphologies	Habitat (H) 4. Improve freshwater habitat access and suitability for fish and the quality and quantity of habitat used by all freshwater life stages	Biological Interactions (BI) 3. Reduce biotic interactions that could have negative effects on native fish populations	Fisheries Actions (FA) 2. Regulate harvest to support self- sustaining populations.	Whole-Basin Nested Goals Fish Populations (FP) 1. Achieve naturally self- sustaining native fish populations
 6.1 Improve instream ecological flow regimes year-round for the Klamath River mainstem and its tributaries in all sub-basins 6.2 Reduce anthropogenic sediment inputs while maintaining natural and beneficial sediment inputs 6.3 Reduce external nutrient and pollutant inputs that contribute to detrimental bio-stimulatory conditions 	 5.1 Improve and maintain productive sediment delivery, storage, sorting, and transport dynamics 5.2 Increase channel and floodplain dynamics and interconnectivity 5.3 Promote and expand establishment of diverse riparian and wetland vegetation that contributes to complex channel and floodplain morphologies 	 4.1 Restore fish passage and re-establish channel and other habitat connectivity, particularly in high-value habitats (e.g., thermal refugia) 4.2 Improve water quantity and quality for fish growth and survival 4.3 Enhance, maintain community and food web diversity supporting native fish 4.4 Reduce fish mortality due to entrainment, scour, stranding 4.5 Enhance and maintain estuary, mainstern, tributary, lake, wetland, and refuge habitats for all freshwater life stages and life histories of fish 	 ³ 3.1 Do not generate adverse competitive or genetic consequences for native fish when carrying out hatchery, production, or conservation actions 3.2 Minimize disease-related mortality by reducing vectors and factors known to lead to fish disease outbreaks 3.3 Reduce impacts of non-native plant and animal species on native fish 	³ 2.1 Improve management and regulations/enforcement of harvest, bycatch and poaching of naturally produced fish such that populations do not decline and can recover. *While essential for recovery of fish populations, this objective and objective 3.1 are outside the scope of the IFRMP and falls under the responsibility of federal and state agencies with jurisdiction over harvest management.	 Nested Objectives 1.1 Increase juvenile production 1.2 Increase juvenile survival and recruitment to spawning populations 1.3 Increase overall population abundance and productivity, particularly in areas of high existing abundance or potential future abundance or in special or unique populations 1.4 Maintain or increase life history and genetic diversities 1.5 Maintain or increase spatial distributions as necessary

³ Note: Under the direction of the IFRMP Federal Coordination Group, fishery management actions, and related fish population monitoring is relevant to the Plan but considered 'already in place' and thus out of scope of IFRMP. However, we are integrating with new monitoring undertaken by ODFW, CDFW, and other agencies. φ Table 2-2: IFRMP Core Performance Indicators (CPIs) selected by Working Group participants across goals and relevant objectives and associated CPI proxies used currently within the Klamath IFRMP Restoration Prioritization Tool. The hyperlinks in this table direct users to later parts of this plan addressing monitoring strategies for these CPIs. Underlined text in the CPI column links to the relevant section of the IFRMP Monitoring Recommendations.

	Goal	Objectives	CPIs	CPI proxies
9	Fish Populations (FP) 1. Achieve naturally self-sustaining native fish	FP1: Maintain or increase spatial distributions	 Focal species presence/absence % of historical habitat occupied 	 Mapped current distributions of focal fish species in the Basin Mapped current distributions of focal fish species in the Basin vs. mapped known historical distributions of focal fish species
populations.		FP2: Increase juvenile production	 Presence of spawning Presence of rearing Productivity 	None identified
		FP3: Increase juvenile survival and recruitment to spawning populations	<u>Recruitment</u>	None identified
		FP4: Increase overall population abundance and productivity, particularly in areas of high existing abundance or potential future abundance or in special or unique populations	<u>Abundance</u>	None identified
		FP5: Maintain or increase life history and genetic diversities	Life history diversity Age structure/demographics Genetic diversity	None identified
	Biological Interactions (BI) 3. Reduce biotic interactions that	BI1: Do not generate adverse competitive or genetic consequences for native fish when carrying out conservation- oriented hatchery supplementation as needed [Outside scope of IFRMP, included here for completeness]	NA	NA
	could have negative effects on native fish pops.	BI2: Minimize disease-related mortality by reducing vectors and factors known to lead to fish disease outbreaks	 Prevalence of disease pathogens Prevalence of disease-related mortality 	None identified
		BI3: Reduce impacts of non-native plant and animal species on native fish	Presence of invasive aquatic species	 Trout Unlimited - Number of aquatic invasive species per subwatershed
Habitat (H) 4. Improve freshwater habitat access and suitability for fish and	H1: Restore fish passage and re-establish channel and other habitat connectivity, particularly in high-value habitats (e.g., thermal refugia)	• See FP 1	 EPA - Density Road-Stream Crossing Trout Unlimited - Ratio current max. stream network connectivity to historical (inland) 	
	the quality of habitat quantity of habitat used by all freshwater life stages	H2: Improve water temperatures and other local water quality conditions and processes for fish growth and survival	 <u>Thermal refugia</u> <u>Water temperature</u> <u>Water chemistry</u> <u>Turbidity</u> Nutrients 	 NorWeST Mean Aug Stream Temperatures – 2040s

IFRMP Plan Document, 2023, Table 2-2, Page 35 https://ifrmp.org/wp-content/uploads/2023/02/KlamathIFRMP_PlanDocument_20230212_FINAL2.pdf

IFRMP Plan Document

	Goal	Objectives	CPIs	CPI proxies
			<u>Chlorophyll-a</u> <u>Nuisance phytoplankton & cyanotoxins</u>	
		H3: Enhance, maintain community and food web diversity supporting native fish	 None brought forward as priority to support 	None identified
		H4: Reduce fish mor tality due to entrainment, scour, stranding	 None brought forward as priority to support 	None identified
		H5: Enhance and maintain estuary, mainstem, tributary, lake and wetland habitats for all freshwater life stages and life histories of resident and anadromous fish	 <u>Riparian condition</u> <u>Stream habitat condition (physical)</u> 	 EPA - % Potentially Restorable Wetlands
	Fluvial Geomorphic Processes (FG)	FG1: Increase and maintain coarse sediment recruitment and transport	<u>Sediment transport</u>	None identified
	5. Create and maintain spatially connected and diverse channel and floodplain	FG2: Increase channel and floodplain dynamics and interconnectivity	 <u>Geomorphic flushing flows</u> <u>Channel complexity</u> <u>Floodplain connectivity</u> 	 EPA - % Developed, High Intensity in HCZ (Hydrologically Connected Zone); Net river-floodplain exchange in unconfined reaches
	morphologies	FG3: Promote and expand establishment of diverse riparian and wetland vegetation that contributes to complex channel and floodplain morphologies	Large wood recruitment and retention	 EPA - % Developed, High Intensity in RZ (riparian zone) EPA - Density all roads in RZ (riparian zone)
	Watershed Inputs (WI)	WI1: Improve instream ecological flow regimes year-round for the Klamath River mainstem and tributary streams	Instream flows	Trout Unlimited - Water Quantity Sub-Index,Trout Unlimited - Flow volume change risk II (base flow)
6. Improve w quality, quar ecological flo	6. Improve water quality, quantity, and ecological flow regimes	WI2: Reduce anthropogenic fine sediment inputs while maintaining natural and beneficial fine sediment inputs	<u>Fine sediment loads</u>	 USGS - Count of past placer mines in sub-watershed EPA - PHWA Wildfire Vuln. Sub-index EPA - Density all roads in Watershed
		WI3: Reduce external nutrient and pollutant inputs that contribute to bio-stimulatory conditions	<u>Nutrient loads</u>	 Trout Unlimited - # Diversions per stream mile EPA - % Agriculture in Watershed

May 5-9, 2025Monitoring Survey Results

Resource for group discussion

Monitoring gaps that should be addressed over the next five years

Biotic Interaction

- Prevalence of trematodes in the upper basin
- Prevalence, severity and distribution of disease in the above damn reaches
 / tributaries post anadromy

Fish Abundance/Recruitment/Production

- Spawning surveys and out-migrant trapping in key tributaries
- Estimate reach-specific, population-specific production (e.g., smolt trapping in Shasta River, Scott River, and mid-Klamath)

Fish Distribution/Habitat Use

- Access to private lands to understand where fish are going
- Temporal and spatial distributions and movements of fish across life stages
- Temporal and spatial distributions and movements of hatchery suckers
- Thermal refugia usage moving to the upper basin
- Mapping and understanding of thermal refugia

Fish Models

Habitat based production models

Fish Repopulation

Repopulation monitoring and fish passage, at reach-scale

Fish Use of Diversions

- Sucker and salmonid use of diversions in the Klamath Project to inform the need for screening of diversions in the Keno impoundment stretch
- Diversions in Shasta and Scott basins

Fluvial Geomorphology

- Bathymetric surveys
- Streambed characterization of tributaries, especially in reservoir reach
- Benthic monitoring throughout the basin
- Understanding effects of large wood on geomorphology Water Quality
- Water temperature frequency/resolution
- Upslope land use and soil loss
- Riparian recovery
- Upper basin long-term tributary nutrient, sediment, turbidity
- Wetland/agriculture nutrients
- Assessment of progress towards TMDL goals
- Sediment and nutrients levels in the lower river and estuary through multiple years
- Relationship of nutrients to algal blooms

Watershed Inputs

- Hydrologic effects of fire
- Upper Klamath real-time sonde data
- Hydro-flow of springs in the Shasta River
- Upper basin tributary discharge

Misc Fish Monitoring

- Review and report the camera/trash rack data
- O. mykiss broadly
- Upper basin spring Chinook monitoring

Most Important Existing Monitoring that should continue to occur over next 5 years

Biotic Interaction

- Avian predation on suckers and salmonids based on PIT tags recovered from the upper basin rookeries
- Fish health monitoring for C. shasta and Ich

Fish Abundance, Recruitment, Productivity,

- Monitoring endangered suckers (adults and juveniles) and shortnose sucker populations in the upper Klamath, Lost River, and Clear Lake
- Redband and steelhead base information and how it impacts mainstem flows
- Salmon juveniles-per-spawner to inform productivity

Fish Migration

- Scott and Shasta long term monitoring sites for adult migration and smolt outmigration
- Sonar at Iron Gate to detect adult migration upstream
- Smolt outmigration trapping in mainstem Klamath
- Timing of river entry, movement and habitat used from ocean to spawning grounds by adults including use of habitat/tributaries not used for spawning (e.g., temperature refugia)

Fish Spatial Structure, Age Structure, Diversity,

- Spatial structure and diversity of each species
- Age distribution of adults
- Spatial and diversity issues for juveniles and smolts from redds to rearing, to over-summering, to over-wintering

Fish Use of Diversion

- Diversion monitoring

Fluvial Geomorphology

- Bathymetry
- Accretion

Monitoring Infrastructure

 Maintain existing PIT tag infrastructure around the Upper Basin (e.g., Williamson River, Link River ladder, Pelican Bay, Shoreline Springs, and Hagelstein)

Water Quality

- Long-term water quality monitoring going including temperature, turbidity, pH, oxygen, and make it available in real-time
- Algal biomass
- Habitat monitoring (transition to benthic in addition to planktonic monitoring)
- Sediment concentration
- River reach metabolism studies in the mid and lower Klamath
- Temperature stratification in pools
- Toxins
- Add BGA and chlorophyll to sondes

Water Quantity/Flow

- Flow (discharge) gages
- Water deliveries to Reclamations Project and how it impacts mainstem flows

Watershed Inputs

- Nutrients throughout the basin
- Inflow/outflow nutrient throughout the basin
- Fire associated water quality
- Post-fire effects/recovery
- Sondes data
- Groundwater monitoring

Most important new monitoring that should occur over next 5 years

Biotic Interaction

- Monitor trematodes, a parasite of suckers, their snail hosts, in upper Klamath
 Lake and other waterbodies in the upper basin
- Disease monitoring and fish health in the upper basin

Fish Abundance/Recruitment/Productivity

- Tributary-, population-, and mainstem reach-specific smolt production
- Spawning surveys upstream of Iron Gate
- Tributary-, population-, and mainstem reach-specific spawning ground survey to inform escapement

Fish Distribution/Habitat Use

- Adult movement and numbers from ocean to confluence (TR and KR), confluence to spawning habitat
- Fish passage and connectivity
- Out-migrant trapping in key tributaries and reaches on the Klamath including around Copco
- Thermal refugia
- Fish passage at Link and Keno to understand how fish attempt to pass and the challenges

Fish Use of Diversions

- Diversion monitoring

Fish Life History

- Chinook life history monitoring (juvenile outmigration timing, size and survival and adult return timing and abundance, specific to each tributary)
- Coho life history monitoring
- Redband trout population and life history monitoring

Fluvial Geomorphology

- Increased resolution of accretion monitoring
- Bathymetry
- Understanding floodplain hydrology in reservoir footprints
- Classifying streams (intermittent/hydrology)
- Which streams are most resilient to drought and how to improve that

Sucker Monitoring

- Monitoring focused on Klamath Largescale suckers in the upper Klamath Basin
- Endangered sucker population monitoring (especially juveniles and larvae),
 identify cause of sucker recruitment problems
- Monitor the fate of hatchery-reared suckers when released into the wild
- Monitor existing sucker populations in Gerber Reservoir and other local water bodies (e.g., Lower Klamath Lake, Tule Lake, and Lost River)
- Use acoustic telemetry to monitor suckers in Clear Lake, Gerber, and other local water bodies with suckers

Water Quality

- Mainstem habitat monitoring post-dam removal (disease, sediment transport, water quality).
- Water quality around Keno and Lake Ewauna to understand potential migration barriers associated with warm temps and low DO
- Water temperature and quality monitoring
- Benthic monitoring
- SSC/turbidity curves
- Sediment characterization
- Riparian recovery
- Increase in spatial extent of sediment and nutrient monitoring in upper basin tributaries and wetlands.
- Monitor floodplain and riparian vegetation response to restoration
- Turbidity monitoring at key locations
- BGA and chlorophyll

Most important other monitoring that should be considered

Biotic Interaction

- Number and foraging habits of avian predators in the upper basin
- Invasive species detection and assessments including predation effects

<u>Climate</u>

- Climate patterns
- Snowmelt and groundwater dynamics relative to runoff
- Fish Abundance/Recruitment/Productivity
- - Status and recovery of spring Chinook

Fish Distribution/Habitat Use

- Salmonid usage of upper Klamath and wetlands
- Habitat monitoring in Shasta and Trinity
- Fish Spatial Structure / Age Structure / Diversity
- Basin-wide genetic evaluation
- Fish Use of Diversion
- Stream diversion and use

Food Web

- Food web studies
- Monitoring Infrastructure/Technology
- Telemetry and data collection above anadromy
- Expand LiDAR in tributaries

Sucker Monitoring

- Track suckers from year-1 to year-2, to year-3 to identify recruitment bottleneck

Water Quality

- Understand pHOS through the development of ocean fishery monitoring, SGS, smolt-production, and population-specific and cohort-specific
- Invertebrate
- Macroinvertebrate surveys
- Algal toxin
- Expand time frame into later season (e.g., cyanotoxins)

Watershed Inputs

- Nutrient changes in riparian and terrestrial parts of the basin, stable isotopes in terrestrial habitats
- Soil and water sampling at rain-on-fire and major landslide events
- Drone surveys as indicator for soil stability impacted by land management practices
- Soil moisture probes to inform connectivity duration of tributaries and groundwater levels
- Wood/riparian surveys
- Beaver surveys
- Landscape scale analyses using satellite data
- Gravel recruitment in former reservoir reaches
- Shade/vegetation mapping using first returns from LiDAR to understand impacts on surface water.
- Groundwater temp/level monitoring

Current Monitoring Activities: Would you modify any?

- Maintain existing monitoring while adding new objectives based on post-dam removal condition and fish repopulation upstream
- Design a monitoring plan based on hypothesized outcomes
- Assess monitoring needs for policy decisions
- Additional ARIS cameras for enumeration, complete bathymetric and accretion surveys
- Improve processes and support for QA/QC, managing, and sharing data, including coordinated interagency project site exchange to and learn from the efforts of others
- Increase community involvement, citizen science, education, and landowner relations to benefit access
- Expanded spatial distribution and temporal coverage
- Mainstem RST near CA/OR
- Additional PIT tagging and snorkel/redd surveys to focus water quality monitoring efforts
- Annual synthesis and timely reporting
- Additional benthic habitat monitoring
- Review/compare programs to ensure parameters, frequency, and methods align/differ

Any other information to share?

- Cannot rely on legacy data (i.e., prior to dam removal) to interpret current observations or inform forecasts
- Visit study areas
- Need for upper and lower basin communication with an ability to work across political borders and maintain information sharing to be adaptive
- Need accretion and bathymetry surveys
- Utilize new technologies to inform basin-scale management, while streamlining all protocols to facilitate comparisons
 Refine Scott/Shasta TMDLs to inform restoration, while identifying the proportion of TMDL objectives tied to contributing
 factors

May 2025 Survey Results (small set of KBMP/KBFC respondents so not representative of our larger group)

Is current monitoring funding secure?

13

Resource for group discussion

Watershed Inputs – Instream Flow

IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Expand network of streamflow gaging stations
- Track groundwater levels at monitoring wells

Existing Monitoring

- Streamflow gages provide spatial coverage across the basin
- Groundwater monitoring throughout the basin

- Streamflow monitoring at tributary mouths and within fish population areas
- Real-time, publicly accessible, flow data
- Systematic/comprehensive groundwater monitoring

Recommendation	1-Year Cost	10-Year Cost
Streamflow stations (top priority sites)	\$298,000	\$3,091,000
Streamflow station (second priority sites)	\$305,000	\$2,774,000
Groundwater stations	\$85,000	\$192,000

Watershed Inputs - Nutrient Loads

IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Expand streamflow gaging stations
- Track groundwater levels at monitoring wells

Existing Monitoring

- Broad spatial coverage in the tributaries of the Upper Klamath River subbasins and the mainstem
- Focused locations in Scott, Shasta, and Trinity subbasins
- Nutrient concentration at individual sites assessed up to 12 times per year

Gaps/Needs

• Lack of data to understand how large precipitation events or flow management changes contribute nutrients to the system

Recommendation	1-Year Cost	10-Year Cost
Water samplers (top priority sites)	\$685,000	\$5,326,000
Water samplers (second priority sites)	\$847,000	\$5,395,000

Watershed Inputs - Fine Sediment Loads and Turbidity IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Expand/maintain network of continuous sondes with real-time data transmission
- Standardize data collection and sharing across organizations

Existing Monitoring

• Longitudinal monitoring network from Keno to the estuary

Gaps/Needs

- Limited information in tributaries (e.g., Scott River, Sprague River, and Wood River)
- Event-based monitoring to better understand how large precipitation events contribute fine sediment to the system

Recommendation	1-Year Cost	10-Year Cost
Continuous sondes (top priority sites)	\$594,000	\$3,812,000
Continuous sondes (second priority sites)	\$839,000	\$3,571,000
Standardized data practices	Workshop (TBD)	Workshop (TBD)

(same recommendations as Habitat - Water Temperature)

Fluvial Geomorphology - Large Wood Recruitment and Retention IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Measure current large wood concentrations with LiDAR
- Assess potential large wood supple with LiDAR tree height recommendations

Existing Monitoring

• Wood inventories associated with site-specific habitat assessments or individual restoration effectiveness monitoring

- Consistent basin-wide monitoring approach is lacking
- Inventories need to be standardized
- Process-focused assessments
- Better understanding of natural and/or historic wood metrics

Recommendation	1-Year Cost	10-Year Cost
Measure current large wood concentrations	\$1,161,000	\$3,565,000
Assess potential large wood supply	\$1,149,000	\$3,539,000

Fluvial Geomorphology - Geomorphic Flushing/Scouring Flows IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Characterize flushing flows with gage data and transport measurement calibrations *Existing Monitoring*
- None identified

Gaps/Needs

• Build on existing work and expand flow monitoring stations

Recommendation	1-Year Cost	10-Year Cost
Characterize flushing flows with gage data	\$7,000	\$1,009,000

Fluvial Geomorphology - Floodplain Connectivity/Inundation IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Map alluvial valleys with floodplains
- Monitor timing and duration of overbank flows from gage sites
- Map floodplain inundation extent from satellite imagery

Existing Monitoring

- Floodplain connectivity addressed through geomorphic studies of channel changes *Gaps/Needs*
- Not monitored on a basin-wide scale
- Metrics that address the interface between channels and floodplains

Recommendation	1-Year Cost	10-Year Cost
Map alluvial valleys	\$952,000	\$1,189,000
Monitor timing of overbank flows	\$20,000	\$141,000
Map floodplain inundation extent	\$26,000	\$81,000

Fluvial Geomorphology - Channel Complexity IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Assess basin-wide planform complexity from imagery
- Assess detailed topographic complexity in larger streams

Existing Monitoring

• None identified

- Not monitored on a basin-wide scale
- Transferrable metrics to track adjustments to channel complexity over broad spatial and temporal scales

Recommendation	1-Year Cost	10-Year Cost
Assess basin-wide planform complexity	\$32,000	\$72,000
Assess topographic complexity in larger streams	\$3,907,000	\$12,197,000

Fluvial Geomorphology - Sediment Distributions IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

• Map substrate sizes with air photos or bathymetric LiDAR

Existing Monitoring

• None identified

Gaps/Needs

• Standardized broad-scale sediment transport monitoring

Recommendation	1-Year Cost	10-Year Cost
Map substrate sizes (air photos method)	\$423,000	\$1,319,000
Map substrate sizes (bathymetric LiDAR method)	\$3,915,000	\$12,224,000

Habitat - Water Temperature

IFRMP Section 5.0: Recommended Monitoring Actions & Costs

Recommendations

- Maintain/expand the network of continuous sondes with real-time data transmission
- Standardize data collection and sharing across organizations

Existing Monitoring

• Over 100 monitoring sites located in all subbasins

Gaps/Needs

- Real-time assessments
- Better coordination regarding how data is collected, reported, and shared

Recommendation	1-Year Cost	10-Year Cost
Continuous sondes (top priority sites)	\$594,000	\$3,812,000
Continuous sondes (second priority sites)	\$839,000	\$3,571,000
Standardized data practices	Workshop (TBD)	Workshop (TBD)

(same recommendations as Watershed Inputs - Fine Sediment Loads and Turbidity)

Habitat - Water Chemistry (DO, pH, conductivity) Recommended Monitoring Actions & Costs

Recommendations

- Maintain/expand the network of continuous sondes with real-time data transmission
- Standardize data collection and sharing across organizations

Existing Monitoring

- Most subbasins have a few monitoring sites
- Samples collected 1-12 times per year, except for the Scott River and Shasta River subbasins which have extensive monitoring

- Continuous data and if possible real-time data to evaluate effects associated with events such as floods
- Better coordination among agencies collecting, reporting, and sharing data

Recommendation	1-Year Cost	10-Year Cost
Continuous sondes (top priority sites)	\$594,000	\$3,812,000
Continuous sondes (second priority sites)	\$839,000	\$3,571,000
Standardized data practices	Workshop (TBD)	Workshop (TBD)

Habitat - Thermal Refugia

Recommended Monitoring Actions & Costs

Recommendations

- Identify and map refugia across the basin
- Detailed monitoring of a subset of thermal refugia
- Assess utilization of thermal refugia
- Evaluate the relative proportion of flow and effects on mixing

Existing Monitoring

• Groundwater wells monitored in the Upper Klamath Basin

- No coordinated basin-wide assessment
- Identify, classify, and map refugia at the basin scale
- Identify refugia on private lands
- Monitoring of a subset of refugia to better understand the seasonal variability and utilization of the refugia

Recommendation	1-Year Cost	10-Year Cost
Map basin-wide thermal refugia	\$511,000	\$1,595,000
Monitor subset of thermal refugia	\$6,000	\$68,000
Assess utilization of thermal refugia	\$21,000	\$256,000
Evaluate flow/mixing with hydraulic modeling	TBD	TBD ²⁵

Habitat - Nuisance Phytoplankton and Associated Algal Toxins Recommended Monitoring Actions & Costs

Recommendations

• Maintain/expand the existing monitoring network for evaluating levels of nuisance phytoplankton and associated algal toxins in the basin

Existing Monitoring

- Occurs throughout the basin
- Chlorophyll-a monitoring efforts implemented by the USGS in the Upper Klamath Lake
- Monitoring exists in the Trinity River and Lake Shastina

Gaps/Needs

• None identified

Recommendation	1-Year Cost	10-Year Cost
Indirect phytoplankton monitoring	\$35,000	\$1,431,000
Direct phytoplankton and toxin monitoring	\$227,000	\$2,198,000

Habitat - Stream Habitat Condition Recommended Monitoring Actions & Costs

Recommendations

- Assess basin-wide stream habitat diversity from imagery, supplemented in key areas with detailed field-surveys
- Monitor aquatic invertebrate abundance and species composition

Existing Monitoring

• None identified

Gaps/Needs

• Broad-based assessment of the status of physical habitat structure and diversity

Recommendation	1-Year Cost	10-Year Cost
Assess basin-wide planform complexity	\$32,000	\$72,000
Assess topographic complexity in larger streams	\$3,907,000	\$12,197,000
Supplemental field surveys	\$5,000	\$64,000
Monitor aquatic invertebrates	Workshop (TBD)	Workshop (TBD)

Habitat - Riparian Condition Recommended Monitoring Actions & Costs

Recommendations

• Implement remorse sensed methods for undertaking broad-scale evaluations of riparian structure and condition

Existing Monitoring

- Riparian condition is assessed for many fish habitat restoration projects across the basin as part of localized project effectiveness monitoring efforts
- Rate at which riparian vegetation complexity is being recovered at restored sites is assessed indirectly via Klamath Bird Observatory

Gaps/Needs

• No program/protocol to broadly assess riparian habitats across the basin

Recommendation	1-Year Cost	10-Year Cost
Topographic LiDAR assessment of vegetation	\$1,166,000	\$3,575,000
Supplemental field surveys	\$5,000	\$64,000
Imagery-based NDVI assessment of vegetation	\$51,000	\$161,000 ₂₈

Biotic Interactions - Disease

Recommended Monitoring Actions & Costs

Recommendations

- Expand existing monitoring network for *Ceratoonova shasta* and *Parvicapsula minibornis*
- Expand existing monitoring network for *Ichthyopthierius multifiliis* (Ich) and *Flavobacterium columnarae* (Columnaris)
- Develop approach for monitoring disease pathogens/parasites affecting endangered suckers *Existing Monitoring*
- Collaborative monitoring C. Shasta and P. minibicomis

- Gaps in monitoring coverage
- Current methods can be insensitive to early or light infections of Ich
- Direct evaluation of disease condition in suckers is logistically difficult

Recommendation	1-Year Cost	10-Year Cost
None provided		

Biotic Interactions - Invasive Aquatic Species Recommended Monitoring Actions & Costs

Recommendations

• Establish eDNA sampling network for monitoring invasives

Existing Monitoring

 Localized surveys for invasive species, often research focused, and some incidental reporting derived from inadvertent captures of invasives during other fish monitoring efforts

Gaps/Needs

• No directed, systematic monitoring efforts that could provide information on changing distributions and/or abundance of invasive species across the basin

Recommendation	1-Year Cost	10-Year Cost
Establish eDNA network for invasives	\$275,000	N/A

Fish Populations - Focal Species Population Indicators Recommended Monitoring Actions & Costs

Recommendations

- Establish eDNA sampling network for monitoring distribution of focal species
- Support current initiatives in the basin focused on integrating and sharing information related to fish population indicators
- Support ongoing fish population monitoring efforts throughout the basin

Existing Monitoring

- Monitoring across basin by numerous entities
- Spatial and temporal distribution, presence of spawning and rearing

- Ensure monitoring can track changes
- Sharing data across monitoring agencies at the basin-wide scale
- Chinook fishery management (e.g., age-structure escapement estimates)
- Establish a life-cycle monitoring site in the lower Klamath River mainstem

Recommendation	1-Year Cost	10-Year Cost
Establish eDNA network for focal species	\$275,00	N/A
Support initiatives on fish population information sharing (PIT Tag Detection)	\$8,589,000	\$51,024,000
Support ongoing fish population monitoring efforts	\$14,094,000	\$180,426,000
Fill existing or upcoming gaps on life-cycle monitoring	Workshop (TBD)	Workshop (TBD)